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Chapter 1

Introduction and basic
tools

1.1 Simple examples
The calculations in this section aim to give the reader first intuition and some
examples. They are not always rigorous. In Section 1.2 we will start the rigorous
treatment. A more detailed introduction with many examples can be found in
[1, 16].

Heat- and Laplace equation
Let

u : (0, T )× R→ [0,∞)

be twice differentiable. For each t think of u(t, ·) as a hear distribution for
example in a metallic rod. We want to deduce a law for the evolution of u in
time heuristically. In an arbitrary interval (x, y) let m(t, x, y) the total heat at
t,

m(t, x, y) =

ˆ y

x

u(t, z) dz.

Then
∂m

∂t
(t, x, y) =

ˆ y

x

∂u

∂t
(t, z) dz.

It seems plausible, that the total heat in (x, y) grows proportionally to the
spatial gradient at x an y,

∂m

∂t
(t, x, y) =

∂u

∂z
(t, y)− ∂u

∂z
(t, x).

Hence ˆ y

x

∂u

∂t
(t, z) dz =

∂u

∂z
(t, y)− ∂u

∂z
(t, x)

and after differentiation with respect to y we get

∂u

∂t
(t, y) =

∂2u

∂z2
(t, y).
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This is the one-dimensional version of the heat equation, that u has to satisfy
due to the model assumptions. This is a simple example of a partial differential
equation, an algebraic equation between the derivatives of the function u. A
more precise definition follows later. The higher dimensional version of the heat
equation for a function,

u : (0, T )× Rn → [0,∞),

∂tu = ∆u,

can be derived by a similar heuristic argument. Here ∆ denoted the so-called
Laplace-operator

∆ =

n∑
i=1

∂2
xixi .

1

Hence a distribution function

ũ : Rn → [0,∞)

that describes an equilibrium (constant heat everywhere) must satisfy

∆ũ = 0.

This is the so-called Laplace-equation and its solutions are called harmonic func-
tions. These two equations, the Laplace- and the heat equation, are the pro-
totypes of two classes of equations, that will play a major role in this course.
They belong to the so-called elliptic resp. parabolic equations.

More generally it is possible to include independent local heat sources into
our model, i.e. at some x ∈ Rn we have a heat source of intensity f(x). The
heat evolution is then given by

∂tu = ∆u+ f

and its equilibria are solutions of the Poisson-equation

∆ũ+ f = 0.

Wave equation
Beside the parabolic and elliptic equations, the wave equations form a third
improtant class of partial differential equations. For example, they model a
vibrating string or membrane. The prototype has the form

∂2
ttu = ∆u.

Again we want to motivate this equation by a heuristic. Let I = (a, b) ⊂ R
be an arbitrary interval and let u(t, x) be the displacement of the string with

1

∂m
xi1 ...xim

=
∂m

∂xi1 · · · ∂xim
.
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respect to the x-axis. The crucial model assumption is that the force F that
acts onto the mean displacement

A =
1

b− a

ˆ b

a

u

is given by the change of displacement at the boundary points (make a sketch
to visualize the idea),

F = ∂xu(t, b)− ∂xu(t, a) =

ˆ b

a

∂2
xxu(t, y) dy.

Newton’s law says
(b− a)∂2

ttA = F

(we assume unity mass density) and hence

ˆ b

a

∂2
t u(t, y) dy =

ˆ b

a

∂2
xxu(t, y) dy.

This holds for all intervals (a, b) and hence

∂2
ttu = ∂2

xxu.

Minimal surface equation
Until now all equations were linear, i.e. the corresponding differential operators

∆, ∂t −∆, ∂2
tt −∆

are linear maps on the space of twice differentiable functions. Now we consider
a nonlinear example, which stems from a natural geometrical problem.

Suppose, on an open and connected set Ω ⊂ Rn we have a function u ∈
C2(Ω)2, that minimizes the surface area F(u) of its graph

G(u) = {(x, u(x)) : x ∈ Ω}

within this class, given boundary values

u|∂Ω = ϕ.

We use the direct method of the calculus of variations to deduce an equation for
u. Let η ∈ C∞c (Ω)3 a test function. Since η|∂Ω = 0 and u minimizes the area,
we have

∀t ∈ R : F(u) ≤ F(u+ tη).

2I.e. u is twice continuously differentiable
3η is infinitely often differentiable and

supp η := {x ∈ Ω: η(x) 6= 0} ⊂ Ω
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The surface area of the graph is given by

F(u) =

ˆ
Ω

√
1 + |∇u|2.

There holds

0 =
d

dt
F(u+ tη)|t=0 =

ˆ
Ω

〈∇u,∇η〉√
1 + |∇u|2

= 4 −
ˆ

Ω

div

(
∇u√

1 + |∇u|2

)
η.

This equation holds for all text functions η and by the fundamental lemma of
the calculus of variations5 there holds

div

(
∇u√

1 + |∇u|2

)
= 0.

This is the so-called Minimal surface equation, on of the mostly studied equa-
tions of the field of geometric analysis.

1.1.1 Exercise. In case n = 1 prove that we get the expected minimizers
(what are they?).

Boundary value problems and PDE
We have seen several examples of partial differential equations and naturally
ask the question of solvability, i.e. of the existence of a solution. On the set
Ω ⊂ Rn consider the Laplace-equation

∆u = 0.

It is clear, that every affinely linear map

u(x) = Ax+ b

with a linear map A : Rn → R solves this equation. Hence we have existence
in this case. However, there are many solutions. To get uniqueness, we have
to impose conditions, similar to the theory of ordinary differential equations,
where we have to impose initial values. In our situation we can for example
impose certain values of u on the boundary ∂Ω, i.e. we consider the so-called
boundary value problem

∆u = 0 in Ω

u = ϕ on ∂Ω.

A boundary value problem is also called Dirichlet-problem, if we prescribe the
values of the solution on the boundary. Alternatively we can prescribe the
normal derivatives,

∆u = 0 in Ω

∂u

∂ν
= ψ on ∂Ω

4Partial integration, details later
5Details later
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and then we call this problem Neumann-problem. Soon we will be able to show,
that these problems possess unique solutions for certain ϕ and ψ.

For this purpose we will use Hilbert space methods. The essence of the idea
is to view the Laplace-operator as a linear operator between suitable Hilbert
spaces of weakly differentiable functions6, which satisfies the assumptions of
the Riesz representation theorem. These Hilbert spaces are so big, that it is
relatively easy to find a solution. However, the spaces a re so big, that it is even
not clear, if these generalized solutions are differentiable in the classical sense.
This question will then be investigated within the regularity theory.

Now we give a definition and a broad classification of partial differential
equations.

1.1.2 Definition. (i) Let n ≥ 1 and Ω ⊂ Rn be open and

F : W ⊂ Rn
k

× Rn
k−1

× . . .× Rn × R× Ω→ R

a map on an open set W . An equation of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x)7 = 0, x ∈ Ω, (1.1)

is called partial differential equation (PDE) of k-th order.

(ii) (1.1) is called quasilinear, if F is affinely linear in the first variable.

(iii) (1.1) is called semilinear, if ∂F/∂ai1...ik only depends on x ∈ Ω.

(iv) (1.1) is called linear, if F is affinely linear in the first k + 1 variables.

(v) If (1.1) does not belong to one of the above categories, it is often called
fully nonlinear.

1.1.3 Remark. (1.1) is to be understood symbolically. Of course it is not clear
yet, if this equation admits a k-times differentiable solution.

1.1.4 Exercise. Determine for the Poisson-equation, the heat equation, the
wave equation and the minimal surface equation the defining F and the correct
equation type (linear, semilinear etc.).

In this course we will restrict our attention to equations of second oder.
This is more or less a matter of taste, whereas they certainly belong to the most
important and best understood equations.

1.2 Prerequisites
In this section we collect several elementary facts about function spaces, which
we basically consider to be known. This section is dynamic throughout the
semester und will be updated according to our needs.

The necessary prerequisites which we assume to be known are the obliga-
tory lectures Analysis I+II, in particular multivariable calculus and the most

6Sobolev-spaces
7Dku is the vector of all ordered k-th partial derivatives of u.
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important existence theorems (inverse and implicit function theorem) and the
most important elements of measure theory, such as the Lebesgue integral and
Lp-spaces. Some of these things can be repeated during the exercises. As we
have already done at some points, we will from time to time fix some notation
and terminology from the Analysis courses in the footnotes, in case of possible
ambiguities.

In the rest of this section we collect some important structures and spaces
which will be used throughout this course.

General notation
(i) For the number systems we use the following notation:

· R the real numbers
· C the complex numbers
· N the positive integers
· N0 the non-negative integers.

(ii) The notion of a multiindex simplifies notation of partial derivatives a lot.
A multiindex is simply an n-tuple of nonnegative integers

α = (α1, . . . , αn).

Its length is

〈α〉 =

n∑
i=1

αi.

For a vector x ∈ Rn we define

xα =

n∏
i=1

(xi)αi

and similarly the α-th partial derivative of an 〈α〉-times continuously dif-
ferentiable function u is defined by

∂αu =
∂〈α〉u

∂(x1)α1 . . . ∂(xn)αn
.

Structures
1.2.1 Definition. (i) A pair (M,d) with a set M and a map

d : M ×M → [0,∞)

is called metric space, if for all x, y, z ∈M there hold:

(a) d(x, y) = 0 ⇔ x = y

(b) d(x, y) = d(y, x)

(c) d(x, y) ≤ d(x, z) + d(z, y)

(ii) (M,d) is called complete, if every Cauchy sequence converges to a limit
x ∈M .
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The concepts of convergence, Cauchy-sequence, completeness and bounded-
ness in metric spaces should be clear according to your knowledge about Rn
and will be assumed to be known. A good source to repeat these things are the
lecture notes to Analysis by Prof. Kuwert, [9]. In the following K always stands
for R or C.

1.2.2 Definition. (i) A pair (E, ‖ · ‖) with a K-vector space E and a map

‖ · ‖ : E → [0,∞)

is called normed vector space, if for all x, y ∈ E and all λ ∈ K there hold:

(a) ‖x‖ = 0 ⇔ x = 0

(b) ‖λx‖ = |λ|‖x‖
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

(ii) E is called Banach space, if it is complete as a metric space (with the
induced metric d(x, y) = ‖x− y‖).

1.2.3 Definition. (i) A pair (E, g) with a K-vector space and a map

g : E × E → K

is called inner product space, if for all x, y, z ∈ E and all λ, µ ∈ K there
hold:

(a) g(x, y) = g(y, x)

(b) g(λx+ µy, z) = λg(x, z) + µg(y, z)

(c) g(x, x) ≥ 0 and (g(x, x) = 0 ⇔ x = 0)

(ii) E is called Hilbert space, if E is a Banach space with respect to the induced
norm

‖ · ‖g =
√
g(·, ·).

1.2.4 Notation. (i) The symbol 〈·, ·〉 will always denote the Euclidean stan-
dard inner product of Kn,

〈x, y〉 =

n∑
i=1

xiȳi.

(ii) We stipulate Ω to always represent an open set of Rn, n ≥ 1, equipped
with the standard Euclidean inner product and the Lebesgue measure Ln.

(iii) Open sets Ω,Ω′ are defined to be related by the symbol

Ω′ b Ω,

if and only if the closure of Ω′ is compact and contained in Ω.

(iv) An open ball of radius r > 0 around a point x ∈ Rn is denoted by

Br(x) = {y ∈ Rn : |y − x| < r}

and an open and connected subset of Rn is called domain.
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(v) The symbol | · | always denoted the norm induced by 〈·, ·〉 on Kn,

|x| =

√√√√ n∑
i=1

(xi)2.

In both cases we do not fix the dimension n within the notation.

1.2.5 Notation (Einsteins summation convention). We use Albert Einsteins
simplification (!!!), that in product expressions we sum over the same indices, if
they appear precisely once as superscript and subscript. The range of summation
is always the maximal possible range. For example take x = (xi), y = (yi) ∈ Rn,
then

〈x, y〉 =

n∑
i=1

xiyi = δijx
iyj , (1.2)

where

δij =

{
1, i = j

0, i 6= j

is called Kronecker-delta. Note that in the middle expression in (1.2) the sum-
mation sign is necessary, since both indices i are superscripts. The summation
convention says, that in the expression on the right hand side of (1.2) we have
to sum over i and j. Especially when using multilinear maps this leads to a
notational simplification, e.g. in a term of the form

ai1...ikv
i1 · · · vik ,

where we have to sum over all indices i1, . . . , ik.

Function spaces
1.2.6 Definition. Let X be a set and V be a K-vector space. The we define
by V X the vector space8 of all maps

u : X → V.

1.2.7 Remark (Ck-spaces). Let n,m ∈ N, Ω ⊂ Rn be open and k ∈ N0.

(i) By Ck(Ω,Rm) we denote the vector space of all k-times continuously dif-
ferentiable functions

u : Ω→ Rm,

where for k = 0 we mean the space of continuous functions.

(ii) By Ck(Ω̄,Rm) we denote the vector space of all functions u ∈ Ck(Ω,Rm)
such that u and all its derivatives up to order k can be extended to Ω̄
continuously. We also write

Ck(Ω) := Ck(Ω,R), Ck(Ω̄) := Ck(Ω̄,R).

8(u+ λv)(x) := u(x) + λv(x)
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If Ω is bounded and k <∞, then Ck(Ω̄) equipped with the norm

|u|k,Ω :=

k∑
i=0

sup
x∈Ω̄

|Diu(x)|

is a Banach space.

1.2.8 Exercise. Prove that Ck(Ω̄) is a Banach space for all k < ∞ and
bounded Ω.

1.2.9 Remark (Lp-spaces). Let n,m ∈ N, Ω ⊂ Rn open and 1 ≤ p ≤ ∞.

(i) By Lp(Ω,Rm) we denote the vector space of equvialence classes of mea-
surable functions u : Ω→ Rn which are p-integrable in case p <∞, i.e.

‖u‖p,Ω :=

(ˆ
Ω

|u|p
) 1
p

<∞,

or which are essentially bounded in case p =∞, i.e.

‖u‖∞,Ω = inf{c ≥ 0: Ln({x ∈ Ω: |u(x)| > c}) = 0},

with the equivalence

u ∼ v ⇔ Ln({x ∈ Ω: u(x) 6= v(x)}) = 0.

The spaces (Lp(Ω,Rm), ‖ · ‖p,Ω) are Banach spaces for all 1 ≤ p ≤ ∞. We
also write

Lp(Ω) := Lp(Ω,R).

If u is a function representing an element of an equivalence class in Lp(Ω),
we will also use the symbol u to denote the whole equivalence class. This
simplifies notation, but one should keep in mind, that the pointwise eval-
uation map at a point x,

u 7→ u(x)

is not well defined.

(ii) The most important estimate in this context is Hölder’s inequality, which
states that for 1 ≤ pi ≤ ∞, 1 ≤ i ≤ k, with

k∑
i=1

1

pi
= 1

there holds

∀ui ∈ Lpi(Ω):

ˆ
Ω

n∏
i=1

ui ≤
n∏
i=1

‖ui‖pi,Ω.

(iii) Let 0 < Ln(Ω) <∞. Then for every measurable function u : Ω→ R there
hold for all 1 ≤ p ≤ q ≤ ∞

(a) ‖u‖p,Ω ≤ Ln(Ω)
1
p−

1
q ‖u‖q,Ω.

(b) limp→∞ ‖u‖p,Ω = ‖u‖∞,Ω.
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(iv) We also define the local Lp spaces (which are not normed spaces).

Lploc(Ω) = {u ∈ RΩ : u ∈ Lp(Ω′) ∀Ω′ b Ω}.

(v) For p = 2, L2(Ω) is a Hilbert space with the inner product

〈u, v〉2,Ω =

ˆ
Ω

uv.

Different “levels” of continuity and differentiability are encoded in the fol-
lowing function spaces, which are called Hölder spaces. These play a crucial role
in the solvability theory of PDE.

1.2.10 Remark (Ck,α-spaces). Let n,m, k ∈ N, Ω ⊂ Rn open, x0 ∈ Ω, 0 < α ≤
1 and u : Ω→ Rm.

(i) u is called locally in Ω Hölder continuous with exponent α, if for every
Ω′ b Ω

[u]α,Ω′ = sup
x,y∈Ω′,x 6=y

|u(x)− u(y)|
|x− y|α

<∞.

The space of such functions is denoted by C0,α(Ω,Rm).

(ii) u is called Hölder continuous in Ω with exponent α, if

[u]α,Ω = sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|α

<∞.

The space of such functions is denoted by C0,α(Ω̄,Rm).

(iii) We also define

Ck,α(Ω,Rm) := {u ∈ Ck(Ω,Rm) : u,β ∈ C0,α(Ω,Rm) ∀〈β〉 = k}

and

Ck,α(Ω̄,Rm) := {u ∈ Ck(Ω̄,Rm) : u,β ∈ C0,α(Ω̄,Rm) ∀〈β〉 = k}.

(iv) For k ∈ N0, on Ck,α(Ω̄,Rm) we define the following norm:

|u|k,α,Ω := |u|k,Ω + max
〈β〉=k

[u,β ]α,Ω.

(v) We write

Ck,α(Ω) = Ck,α(Ω,R), Ck,α(Ω̄) = Ck,α(Ω̄,R)

and also define

Ck,0(Ω,Rm) := Ck(Ω,Rm), Ck,0(Ω̄,Rm) := Ck(Ω̄,Rm)

(vi) For α = 1 the Hölder continuous functions with exponent α are also called
Lipschitz continuous.

1.2.11 Exercise. Let Ω b Rn. Prove that Ck,α(Ω̄) is a Banach space for all
k ∈ N0 and 0 < α ≤ 1.
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1.3 Domains in Euclidean space

Straightening the boundary
We have already seen, that the unique solvability of a PDE in a bounded domain
Ω ⊂ Rn, e.g. of the Laplace equation

∆u = 0,

usually requires the prescription of boundary values, e.g. u|∂Ω = ϕ. Then a
central question in the theory of PDE is, how regular a solution u will be and
if one can estimate its derivatives. These a priori estimates are then a useful
tool in solving the existence problem. For example, if ϕ is smooth9, we would
expect

u ∈ C∞(Ω̄).

In order to prove this we need estimates of all derivatives up to the boundary
∂Ω. Since such boundaries can have a very complicated curved structure, the
straightening of the boundary is a useful tool. Basically this is a very special
coordinate system.

1.3.1 Definition (Coordinate system). Let n ≥ 1, Ω ⊂ Rn open and k ≥ 1.
A coordinate system of class Ck is a Ck-diffeomorphism10

ψ : Ω→ ψ(Ω) ⊂ Rn.

For x ∈ Ω we call the components x̃i(x) of ψ(x) = (x̃i(x))1≤i≤n the x̃-coordinates
of x.

1.3.2 Definition (Ck-boundary). Let n ≥ 1, Ω ⊂ Rn a domain and k ≥ 1.

(i) We say that, Ω has a Ck-boundary, ∂Ω ∈ Ck, if for every x0 ∈ ∂Ω there
exists a ball Br(x0) and a Ck-coordinate system

ψ : Br(x0)→ ψ(Br(x0)),

such that

ψ(x0) = 0, ψ(∂Ω ∩Br(x0)) = {x̃n = 0} ∩ ψ(Br(x0)),

ψ(Ω ∩Br(x0)) = {x̃n > 0} ∩ ψ(Br(x0)).

(ii) The tangent space in x0 ∈ ∂Ω is then defined by

Tx0
(∂Ω) = Dψ−1(0)(Rn−1 × {0}).

(iii) We define the outer normal ν(x0) to ∂Ω in x0 by the properties

ν(x0) ⊥ Tx0
(∂Ω), |ν(x0)| = 1, ∃ε ∀0 < t < ε : x0 + tν(x0) /∈ Ω̄.

9differentiable infinitely often
10ψ is invertible and ψ,ψ−1 ∈ Ck.
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1.3.3 Remark. (i) From the definition of ψ und ν we obtain

〈Dψ(x0)ν(x0), en〉 < 0.

By composing ψ with the linear map defined by

A(v) =

{
ei, v = ei, 1 ≤ i ≤ n− 1

−en, v = Dψ(x0)ν(x0)

we may suppose without loss of generality that

Dψ(x0)ν(x0) = −en.

(ii) By restricting ψ to a smaller ball, we may also suppose that the Ck-norm
of all component functions of ψ and ψ−1 are bounded.

1.3.4 Exercise. Prove that the tangent space Tx0
(∂Ω) does not depend on

the choice of the diffeomorphism ψ around x0, which straightens the boundary.

The following example should be known from the analysis courses.

1.3.5 Exercise. Use polar coordinates to straighten the boundary of

Ω = B1(0) ⊂ R2

locally around a point (x0, y0) with x0 > 0, i.e. find a suitable ψ. Calculate the
tangent space T(x0,y0)(∂B1(0)) and the corresponding outer normal.

In order to reduce global properties (such in whole of Ω̄) to local ones (such
in domains with a straightened boundary), the partition of unity is a useful tool.
Before we can prove this theorem, we need the following lemma.

1.3.6 Lemma. Let x0 ∈ Rn and r > 0. Then there exists a function

0 ≤ ζ ∈ C∞c (B3r(x0))

satisfying
ζ|B̄r(x0) = 1.

Proof. The function

f(t) =

{
e−

1
t , t > 0

0, t ≤ 0

is smooth. The function

ζ(x) =
f
(

2− |x−x0|
r

)
f
(

2− |x−x0|
r

)
+ f

(
|x−x0|
r − 1

)
has the desired properties.
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1.3.7 Theorem (Finite partition of unity for compact sets). Let n ∈ N and
K ⊂ Rn be compact. Let Vj, j ∈ N, be an open cover of K,

K ⊂
∞⋃
j=1

Vj .

Then there exist maps ηi ∈ C∞c (Rn), 1 ≤ i ≤ m, such that for all i there exists
j with

supp ηi ⊂ Vj ,
m∑
i=1

ηi(x) = 1 ∀x ∈ K,

and
0 ≤ ηi ≤ 1.

Proof. Let x ∈ K, then x ∈ Vj for some j. Since Vj is open, there exists a ball
B3rx(x) with

x ∈ B3rx(x) ⊂ Vj .

Hence
K ⊂

⋃
x∈K

Brx(x)

and by compactness we can cover K with finitely many of these balls,

K ⊂
m⋃
i=1

Bri(xi) =: U.

For every i set ζi to be the function from Lemma 1.3.6. For x ∈ U define

ηi(x) =
ζi(x)∑m
k=1 ζk(x)

.

From x ∈ U we deduce x ∈ Bk for some k and hence ζk(x) = 1. Thus the
denominator is positive and ηi smooth in U . The three desired properties are
obvious.

Later we will need a version for open sets.

1.3.8 Theorem (Partition of unity for open sets). Let n ∈ N and Ω ⊂ Rn be
open. Let (Uj)j∈N be a covering of Ω such that

∀j ∈ N : Uj b Ω.

Then there exist maps ηi ∈ C∞c (Rn), i ∈ N, such that for all i there exists j
with

supp ηi ⊂ Uj ,∑
i∈N

ηi(x) = 1 ∀x ∈ Ω,

and
0 ≤ ηi ≤ 1.

13



Proof. First we have to modify the open cover (Uj) suitably. Set

V−1 = V0 = ∅, V1 = U1

and inductively suppose that Vk is already constructed for a given k ∈ N. Pick
an integer Nk, such that

V̄k ⊂
Nk⋃
j=1

Uj =: Vk+1.

Furthermore we may take Nk+1 > Nk in each step. Hence we have produced
an open covering (Vk)k∈N of Ω with

∀k ∈ N : V̄k ⊂ Vk+1.

However, we still need to ensure that every point x ∈ Ω lies in only finitely
many of the covering open sets. Thus we define for k ∈ N0

Wk = Vk+2\V̄k.

For x ∈ Ω there exists a minimal k ∈ N with x ∈ V̄k ⊂ Vk+1 and hence

x ∈Wk−1.

Thus

Ω =

∞⋃
k=0

Wk

and every closed ball B̄r(x) ⊂ Ω intersects only finitely many of the Wk. Now
we construct the partition of unity. Let

x ∈W k ⊂ Vk+3\V̄k−1,

then x ∈ Uj for some j and there exists rx such that

B3rx(x) ⊂ Uj ∩ Vk+3\V̄k−1. (1.3)

Thus for finitely many xl ∈W k there holds

W k ⊂
Lk⋃
l=1

Brl(xl).

Collecting these balls for each k, we get a countable collection of balls Bri(xi)
with B̄3ri(xi) b Ω. For every i set ζi to be the function from Lemma 1.3.6 and
for x ∈ Ω define

ηi(x) =
ζi(x)∑∞
k=1 ζk(x)

.

This is well-defined, since in the denominator the sum is always finite, due to
(1.3). The proof is complete.
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The surface measure
1.3.9 Definition. Let n ≥ 1, Ω ⊂ Rn open and

ψ = (x̃i) : Ω→ V := ψ(Ω)

be a C1-coordinate system. On V we define the Gramian matrix associated to
ψ, g = (gij)1≤i,j≤n, by

g(x̃) = (Dψ−1(x̃))TDψ−1(x̃) (1.4)

with the components

gij(x̃) =

〈
∂ψ−1

∂x̃i
(x̃),

∂ψ−1

∂x̃j
(x̃)

〉
.

With the help of the Gramian matrix we can define the surface measure on
∂Ω. However we first have to define which sets are measurable.

1.3.10 Definition. Let n ≥ 1 and Ω ⊂ Rn open with C1-boundary. We call
E ⊂ ∂Ω measurable, if

prRn−1 (ψ(E ∩Br(x0))) ⊂ prRn−1

(
Rn−1 × {0}

)
is measurable with respect to the (n − 1)-dimensional Lebesgue measure for
every local straightening function ψ around x0 ∈ ∂Ω. Here

prRn : Rn → Rn−1

(x1, . . . , xn) 7→ (x1, . . . , xn−1).

1.3.11 Remark. (i) Since ψ is bijective, ψ interchanges with all set operations
and hence the set of measurable sets A forms a σ-algebra on ∂Ω.

(ii) Let E ⊂ ∂Ω be open11, then E ∈ A, since for all ψ we have

ψ(E ∩Br(x0)) = ψ(U ∩ ∂Ω ∩Br(x0)) = ψ(U ∩Br(x0)) ∩ Rn−1 × {0}.

The projection of the latter set is open in Rn−1 and hence Lebesgue mea-
surable.

1.3.12 Theorem (Surface measure). Let n ≥ 1 and Ω ⊂ Rn a bounded domain
with C1-boundary. There exists a uniquely determined measure µ on ∂Ω, such
that for all A-measurable sets E ⊂ ∂Ω, that lie in the domain of definition
Br(x0) of a local straightening function ψ, there holds

µ(E) =

ˆ
ψ(E)

√
det g∂Ω dLn−1, (1.5)

where g∂Ω is the Gramian matrix associated to ψ|∂Ω
12. We call µ the surface

measure on ∂Ω.

11i.e. there exists an open set U ⊂ Rn with E = U ∩ ∂Ω
12This one is defined by the formula (1.4), where we replace ψ by ψ|∂Ω
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Proof. (i) Let E ∈ A, E ⊂ Br(x0) and ψ ∈ C1(Br(x0), ψ(Br(x0))) be a local
straightening function. We define µ(E) by the formula (1.5). Then µ(E) is
well defined, since ψ(E) is Lebesgue measurable,

√
det g∂Ω is bounded and for

another straightening function

(x̂i) = φ : BR(y0)→ φ(BR(y0))

with Gramian matrix h = h∂Ω associated to φ|∂Ω there hold (for better read-
ability we omit the arguments here):

h = (Dφ−1)TDφ−1 = (Dψ−1 ◦D(ψ ◦ φ−1))T (Dψ−1 ◦D(ψ ◦ φ−1))

= D(ψ ◦ φ−1)T ◦ (Dψ−1)T ◦Dψ−1 ◦D(ψ ◦ φ−1),

deth(x̂) = det(D(ψ ◦ φ−1)(x̂))2 det g(ψ ◦ φ−1(x̂)),

where g = g∂Ω, and hence
ˆ
φ(E)

√
deth =

ˆ
φ(E)

√
det g |det(D(ψ ◦ φ−1))| =

ˆ
ψ(E)

√
det g

due to the transformation theorem.
(ii) Since ∂Ω is compact, there exist finitely many local straightening func-

tions
ψi : Bi := Bri(xi)→ ψi(Bi), 1 ≤ i ≤ N,

with

∂Ω ⊂
N⋃
i=1

Bi.

Put

W1 = B1 ∩ ∂Ω, Wi = (Bi ∩ ∂Ω)\
i−1⋃
k=1

Wk.

The Wi ⊂ Bi are disjoint, measurable and cover ∂Ω. Let E ∈ A be arbitrary,
then

E =

N⋃
i=1

(E ∩Wi).

Hence, if a measure µ with the desired property exists, it can only have the form

µ(E) =

N∑
i=1

µ(E ∩Wi) =

N∑
i=1

ˆ
ψi(E∩Wi)

√
det gi,

which proves the uniqueness.
(iii) We see immediately, that by this formula a measure is defined and that

it has the desired property due to the calculation in (i).

1.3.13 Corollary (Surface integral). Let n ≥ 1 and Ω a bounded domain with
C1-boundary. Let ψ be a local straightening function on B = Br(x0) and

f : ∂Ω→ R
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A-measurable13 and f(x) = 0 for all x /∈ ∂Ω ∩ B. Then f is µ-integrable14 if
and only if f ◦ψ−1

√
det g∂Ω is integrable with respect to the (n−1)-dimensional

Lebesgue-measure and there holdsˆ
∂Ω

f dµ =

ˆ
ψ(∂Ω∩B)

f ◦ ψ−1
√

det g∂Ω dLn−1.

Proof. Let E ∈ A with E ⊂ B and for the moment f = χE
15. Due to (1.5)

there holdsˆ
∂Ω

χE = µ(E) =

ˆ
ψ(E)

√
det g∂Ω =

ˆ
ψ(∂Ω∩B)

χE ◦ ψ−1
√

det g∂Ω.

Hence the result holds for characteristic functions. Due to the linearty of the
integral it also holds for all step functions. With the theorem of monotone
convergence (Beppo-Levi) the result holds for all nonnegative functions and by
decomposition into positive and negative part for all measurable functions.

1.4 The Gaussian divergence theorem
In this section we prove the Gaussian divergence theorem. We will only do this
for domains with C2-boundary. With a little more effort one can also prove
it for C1-boundaries and with even more effort one can prove it for Lipschitz
boundaries. First we need definition.

1.4.1 Definition (Vector field). Let n ≥ 1 and Ω ⊂ Rn be open.

(i) A map
X ∈ Ck(Ω,Rn)

is called vector field of class Ck.

(ii) Let ψ be a C1-coordinate system and X a C1-vector field on Ω. Then

X̃(ψ(x)) = Dψ(x)X(x)

is called the image vector field of X under Dψ.

1.4.2 Definition (Divergence). Let n ≥ 1, Ω ⊂ Rn be open and X ∈
C1(Ω,Rn) a vector field. We define the divergence of X by

divX =
∂Xi

∂xi
.

1.4.3 Lemma. (i) Let ε > 0 and let g = g(t), t ∈ (−ε, ε), be a one-
parameter family of invertible (n×n)-matrices, which is differentiable with
respect to t. Then

(∂t det g)|t=0 = det g(0) tr
(
g−1(0) ◦ ġ(0)

)
(1.6)

13I.e. f−1(V ) ∈ A for all open V ⊂ R
14´

∂Ω |f | dµ <∞
15

χE(x) =

{
1, x ∈ E,
0, x /∈ E.
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(ii) In an arbitrary C2-coordinate system ψ = (x̃i) the divergence is given by

(divX) ◦ ψ−1 =
1√

det g

∂

∂x̃i

(√
det g X̃i

)
, (1.7)

where g is the Gramian matrix associated to ψ and X̃ is the image vector
field of X under Dψ.

Proof. (i) First suppose that g(0) = id. Write

det g =
∑
π

n∏
i=1

(sgn π)giπ(i).

Then

∂t det g =
∑
π

(sgn π)

n∑
k=1

g1π(1) · · · ġiπ(i) · · · gnπ(n).

Since g(0) = id, such a product term is only nonzero if π is the identity permu-
tation. Hence

(∂t det g)|t=0 = tr ġ(0)

and the results holds in this special case. In the general case apply the special
case to the function

h(t) = g(0)−1g(t).

(ii) We also write
ψ−1(x̃) = (xi(x̃)).

The components of X̃ are given by

X̃i =
∂x̃i

∂xk
(ψ−1(x̃))Xk(ψ−1(x̃)).

Hence
∂X̃i

∂x̃i
=

∂2x̃i

∂xk∂xl
∂xl

∂x̃i
Xk +

∂x̃i

∂xk
∂Xk

∂xl
∂xl

∂x̃i

=
∂2x̃i

∂xk∂xl
∂xl

∂x̃i
Xk + divX ◦ ψ−1.

From (i) we obtain

1√
det g

∂

∂x̃i

(√
det g X̃i

)
=

1

2
gpq

∂

∂x̃i
gpqX̃

i +
∂2x̃i

∂xk∂xl
∂xl

∂x̃i
Xk + divX ◦ ψ−1

= gmqδls
∂2xl

∂x̃m∂x̃i
∂xs

∂x̃q
X̃i − ∂2xl

∂x̃i∂x̃m
∂x̃m

∂xl
X̃i

+ divX ◦ ψ−1

= divX ◦ ψ−1,

since
gmqδls

∂xs

∂x̃q
=
∂x̃m

∂xl
,

which can be seen by testing these linear maps on all basis vectors ∂xl/∂x̃j .
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The Gaussian divergence theorem is a generalization of the fundamental
theorem of calculus and reads as follows.

1.4.4 Theorem (Gaussian divergence theorem). Let n ≥ 1 and Ω ⊂ Rn a
bounded domain with C2-boundary and outer normal ν. Let X ∈ C1(Ω̄,Rn) be
a vector field. Then there holdsˆ

Ω

divX =

ˆ
∂Ω

〈X, ν〉 .

Proof. First assume suppX to be contained in the domain of definition B of a
straightening function ψ. Thenˆ

Ω

divX =

ˆ
ψ(Ω∩B)

divX(ψ−1(x̃))
√

det g(x̃) dx̃

=

ˆ
{x̃n>0}

∂

∂x̃j

(√
det g(x̃)X̃j(x̃)

)
dx̃

=

ˆ
{x̃n>0}

∂

∂x̃n

(√
det g(x̃)X̃n

)
dx̃

= −
ˆ
Rn−1

X̃n(x̃1, . . . , x̃n−1, 0)
√

det g(x̃1, . . . , x̃n−1, 0) dx̃1 · · · dx̃n−1

=

ˆ
Rn−1

g(−en, X̃)
√

det g∂Ω

=

ˆ
∂Ω

〈X, ν〉 .

We used here that

gin =

〈
∂ψ−1

∂x̃i
,
∂ψ−1

∂x̃n

〉
= δin

and hence
det g = det g∂Ω, X̃n = g(en, X̃).

Now let X be arbitrary and (Bi)1≤i≤N = (Bri(xi))1≤i≤N a family of balls that
cover ∂Ω and such that B3ri(xi) are the domains of straightening functions.
Also cover

Ω̄\
N⋃
i=1

Bi ⊂
K⋃

j=N+1

Bj

by balls (Bi)N+1≤i≤K , such that

B̄i ∩ ∂Ω = ∅.

Let ηi be an associated partition of unity according to Theorem 1.3.7. Then
ˆ

Ω

divX =

K∑
i=1

ˆ
Ω

div(ηiX) =

N∑
i=1

ˆ
Ω

div(ηiX) =

N∑
i=1

ˆ
∂Ω

〈ηiX, ν〉 =

ˆ
∂Ω

〈X, ν〉 .

We also used, that for a vector field Y ∈ C1
c (Ω) we always haveˆ

Ω

div Y = 0,

which follows from Fubini’s theorem and the fundamental theorem of calculus.
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From the divergence theorem we will deduce some more useful formulas.

1.4.5 Definition (Gradient and Laplace). Let n ≥ 1 and Ω ⊂ Rn open.

(i) If u ∈ C1(Ω), then we define the gradient of u in x ∈ Ω, ∇u(x) ∈ Rn, by
the property

Du(x)X = 〈∇u(x), X〉 ∀X ∈ Rn.

∇u has the components

∇iu = δij
∂u

∂xj
.

(ii) We define the Laplace-operator by

∆: C2(Ω)→ C0(Ω)

u 7→ ∆u = div(∇u).

We obtain immediately:

1.4.6 Exercise. Let n ≥ 1, Ω ⊂ Rn a bounded domain with C2-boundary
and outer normal ν. Let u ∈ C1(Ω̄) and v ∈ C1(Ω̄). Then

(i) (Partial integration)
ˆ

Ω

u∂xiv = −
ˆ

Ω

∂xiuv +

ˆ
∂Ω

uvνi.

If u ∈ C2(Ω̄), additionally there hold

(ii) (1. Green’s formula) ˆ
Ω

∆u =

ˆ
∂Ω

〈∇u, ν〉

(iii) (2. Green’s formula)
ˆ

Ω

v∆u = −
ˆ

Ω

〈∇v,∇u〉+

ˆ
∂Ω

v 〈∇u, ν〉 .

We want to represent ∆ in a different coordinate system. Therefore we need
a representation of the image vector field of the gradient under a coordinate
transformation:

1.4.7 Lemma. Let n ≥ 1, Ω ⊂ Rn open and ψ = (x̃i) a C1-coordinate system.
Then there holds

∂x̃i

∂xk
∇ku(x) = gim(x̃)

∂(u ◦ ψ−1)

∂x̃m
=: ∇̃iu,

where (gij) is the inverse of the Gramian matrix (gij) associated to ψ.
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Proof. Let X ∈ Rn and X̃ be its image vector under Dψ. We calculate〈
∂ψ−1

∂x̃i
gim

∂(u ◦ ψ−1)

∂x̃m
, X

〉
=

〈
∂ψ−1

∂x̃i
gim

∂(u ◦ ψ−1)

∂x̃m
,
∂ψ−1

∂x̃j
X̃j

〉
= gijg

im ∂(u ◦ ψ−1)

∂x̃m
X̃j

=
∂(u ◦ ψ−1)

∂x̃j
X̃j

=
∂u

∂xk
∂xk

∂x̃j
∂x̃j

∂xm
Xm

=
∂u

∂xk
Xk

= 〈∇u(x), X〉 .

This holds for all X ∈ Rn and hence the claim follows.

1.4.8 Exercise. Let Ω = {(x, y) ∈ R2 : x > 0}. Write the Laplace-operator in
polar coordinates

(r, θ) = ψ : Ω→ Ω̃.

This means that you have to find a differential operator L in Ω̃ (which involves
∂/∂r and ∂/∂θ), such that

(∆u) ◦ ψ−1 = L(u ◦ ψ−1).

Hint: Use (1.7).
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Chapter 2

The maximum principle

The maximum principle is certainly one of the most important tools in the
theory of partial differential equations and in whole analysis. In its very simplest
form it appears in the scope of a well known fact:

A real function f : (a, b) → R which satisfies f ′′ > 0 does not attain any local
maximum.

The inequality f ′′ > 0 is a very simple differential inequality. This chapter
is devoted to investigate to some extent, if such a result also holds for more
complicated differential inequalities for functions of several variables, which also
include certain combinations of partial derivatives. Finally such a result will
hold for certain classes of PDE.

2.1 Linear elliptic and parabolic operators
In this section we define the class of equations, for which we will prove a max-
imum principle. These results will only be prototypes in the sense that in the
literature there are more general versions, but to get a first impression the equa-
tions treated here will be general enough. The first type of equations are the
so-called elliptic ones. We have already seen the Laplace-operator as our first
elliptic operator. As already mentioned, we restrict to operators of second order
acting on real valued functions u.

2.1.1 Definition. Let n ≥ 1 and Ω ⊂ Rn open.

(i) A linear map L of the form

L : C2(Ω)→ RΩ

Lu = aiju,ij + biu,i + du, 1

where (aij) ∈ (Rn2

)Ω is symmetric, (bi) ∈ (Rn)Ω and d ∈ RΩ, is called
elliptic in x ∈ Ω, if aij(x) is positive definite, i.e.

∃λ(x) > 0 ∀(ξi) ∈ Rn : aij(x)ξiξj ≥ λ(x)|ξ|2.

1We try to keep notation as slim as possible, with as few symbols as possible. Hence
from now on we use the convention, that indices appearing after a comma denote partial
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L is called linear elliptic operator in Ω, if L is elliptic at every x ∈ Ω.

(ii) Let S ⊂ Ω. L is called strictly elliptic in S, if

∃λ > 0 ∀x ∈ S ∀(ξi) ∈ Rn : aij(x)ξiξj ≥ λ|ξ|2 (2.1)

and uniformly elliptic in S, if

∃Λ > λ > 0 ∀x ∈ S ∀(ξi) ∈ Rn : λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2. (2.2)

The major, classical source for the theory of elliptic partial differential equa-
tions of second order is the excellent book by David Gilbarg and Neil Trudinger,
[5]. Most of the proofs in this chapter are more or less taken from this book.

In the following we calculate how a linear partial differential operator of sec-
ond order transforms under a change of coordinates, also compare Exercise 1.4.8.

2.1.2 Proposition. Let n ≥ 1, Ω ⊂ Rn open, L a differential operator of the
form

Lu = aiju,ij + biu,i + du

and
ψ = (x̃i) : Ω→ Ω̃

a C2-coordinate transformation, then there holds for all u ∈ C2(Ω), that

L̃(u ◦ ψ−1) = (Lu) ◦ ψ−1,

with a differential operator

L̃ = ãij ∂̃ij + b̃i∂̃i + d̃,

where
ãij =

(
aklx̃i,kx̃

j
,l

)
◦ x̃−1,

b̃i =
(
bkx̃i,k + aklx̃i,kl

)
◦ x̃−1

and
d̃ = d ◦ x̃−1.

Proof. Let ũ : Ω̃→ R be defined by ũ(x̃) = u ◦ ψ−1. Hence u(x) = ũ(x̃(x)). We
calculate

u,i = ũ,kx̃
k
,i,

u,ij = ũ,klx̃
k
,ix̃

l
,j + ũ,kx̃

k
,ij

and hence
Lu = aiju,ij + biu,i + du

= aij ũ,klx̃
k
,ix̃

l
,j + aij ũ,kx̃

k
,ij + biũ,kx̃

k
,i + du.

The result follows.

derivatives, e.g.

u,i =
∂u

∂xi
, u,ij =

∂2u

∂xi∂xj
, αi,j =

∂αi

∂xj

etc. This is also well suitable for use of the summation convention.
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Hence under a coordinate transformation such a differential operator is trans-
formed to one of the same kind. If the derivatives of the coordinate transforma-
tion are under control, even the types (strictly, uniformly) elliptic carry over, as
you can convince yourself in the next exercise.

2.1.3 Exercise. Suppose the C2-coordinate transformation

ψ = (x̃i) : Ω→ Ω̃

and its inverse ψ−1 both have bounded derivatives up to second order in a subset
S ⊂ Ω, then L is (strictly) [uniformly] elliptic in S if and only if L̃ is (strictly)
[uniformly] elliptic in S̃ = ψ(S).

Now we define the parabolic operators, a special case of which already ap-
peared in the heat equation. It has the special property that it contains a
certain differential of first order in one direction. We distinguish this direction
by splitting the domain and considering it to be a cartesian product (0, T )×Ω,
where Ω ⊂ Rn is open.

2.1.4 Definition. Let n ≥ 1, Ω ⊂ Rn be open, T > 0 a real number and
Q = (0, T )× Ω.

(i) A linear map P of the form

P : C1;2(Q)→ RQ

Pu = aiju,ij + biu,i + du− u̇, 2

where (aij) ∈ (Rn2

)Q is symmetric, (bi) ∈ (Rn)Q and d ∈ RQ, is called
parabolic in (t, x) ∈ Q, if aij(t, x) is positive definite. P is called linear
parabolic operator in Q, if P is parabolic at every (t, x) ∈ Q.

(ii) Let S ⊂ Q. P is called strictly (uniformly) parabolic in S, if the relation
eq. (2.1) (eq. (2.2)) holds with x replaced by (t, x).

Parabolic equations are often used to model real world phenomena, such as
the flow of heat in a material, as we have already seen. Hence this is a very
important class of equations. Standard textbooks which cover some theory of
these equations are [2, 11].

2.2 Maximum principles

Weak maximum principles
In this section we prove a3 maximum principle for linear elliptic and parabolic
operators. We start with the weak maximum principle, which roughly states
that solutions to certain PDE will attain their global maximum on the boundary
of the given domain.

First we need a definition.

2C1;2(Q) is the space of functions which are once continuously differentiable with respect
to t and twice with respect to x. Then we write u̇ = ∂tu.

3We use ’a’ and not ’the’, because we will not prove it in the most general possible form.
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2.2.1 Definition. Let n ≥ 1, Q ⊂ Rn+1 a set of the form Q = (0, T )×Ω with
T > 0 and Ω ⊂ Rn open. The parabolic boundary ∂pQ of Q is defined by

∂pQ =
(
{0} × Ω̄

)
∪ ([0, T ]× ∂Ω) .

2.2.2 Theorem (Parabolic weak maximum principle). Let n ≥ 1, Ω ⊂ Rn
open and bounded, T > 0 a real number and Q = (0, T )× Ω. Let

Pu = aiju,ij + biu,i + du− u̇

be a linear parabolic operator in Q with d ≤ 0. Suppose u ∈ C1;2(Q) ∩ C0(Q̄)
solves the inequality

Pu ≥ 0.

Then
max
Q̄

u ≤ max

(
0,max

∂pQ
u

)
.

2.2.3 Remark. The statement of the weak maximum principle can be rephrased
by saying that under the given assumptions, if u attains a positive maximum,
this maximum is attained on the parabolic boundary.

Proof of Theorem 2.2.2. This proof is taken from [8]. For (t, x) ∈ [0, T ) × Ω̄
define

v(t, x) = u(t, x)− ε

T − t
,

where ε > 0. v satisfies in Q:

Pv = Pu− εd

T − t
+

ε

(T − t)2
. (2.3)

We first show that v attains positive maxima on the parabolic boundary. If
there was a point

(t0, x0) ∈ Q̄\∂pQ

with
v(t0, x0) = max

Q̄
v,

then first of all t0 < T , hence (t0, x0) ∈ Q and we may conclude

v̇(t0, x0) = v,i(t0, x0) = 0

and D2
xv(t0, x0) is non-positive definit. Since (aij(t0, x0)) is positive definite, we

have
aij(t0, x0)v,ij(t0, x0) ≤ 0.4

Hence
Pv(t0, x0) ≤ dv(t0, x0) ≤ 0.

However we have by (2.3):
Pv(t0, x0) > 0,

4This is an exercise in linear algebra, which is recommended to be worked out.
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a contradiction. Thus for all (t, x) ∈ [0, T )× Ω̄ and all ε > 0 we have

u(t, x)− ε

T − t
≤ max

(
0, max
∂pQ\{t=T}

v

)
≤ max

(
0,max

∂pQ
u

)
.

Letting ε→ 0 gives the result.

2.2.4 Remark. The case where d does not have a sign will be discussed in the
exercises.

From the weak maximum principle we immediately obtain a uniqueness re-
sult for solutions of parabolic equations.

2.2.5 Corollary. Under the assumptions of Theorem 2.2.2 suppose that u,w ∈
C1;2(Q) ∩ C0(Q̄) satisfy

Pu = Pw in Q
u = w on ∂pQ.

Then u = w.

Proof. Apply Theorem 2.2.2 to ±(u− w) to obtain

max
Q̄
|u− w| ≤ 0.

A maximum principle for elliptic equations is also valid. We follow [5].

2.2.6 Theorem (Elliptic weak maximum principle). Let n ≥ 1, Ω ⊂ Rn be
open and bounded and

Lu = aiju,ij + biu,i + du

be a linear elliptic operator in Ω with d ≤ 0,

∀x ∈ Ω ∃λ(x) > 0 ∀(ξi) ∈ Rn : aij(x)ξiξj ≥ λ(x)|ξ|2

and bounded λ−1|b|. Suppose u ∈ C2(Ω) ∩ C0(Ω̄) solves the inequality

Lu ≥ 0.

Then
max

Ω̄
u ≤ max

(
0,max

∂Ω
u

)
.

Proof. Define for γ > 0

z(x) = eγx
1

.

Then
(L− d)z = γ2a11z + γb1z > 0

for sufficiently large γ. Defne for ε > 0

v(x) = u(x) + εz(x).

Then
(L− d)v = (L− d)(u+ εz) > −du ≥ 0
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on the set Ω′ = {x ∈ Ω: u(x) > 0}. Thus v does not attain positive local
maxima in Ω′, since at such points

(L− d)v = aijv,ij + biv,i ≤ 0.

Thus
sup
Ω̄′

v ≤ max

(
0,max

∂Ω′
v

)
and hence for all x ∈ Ω̄′ there holds

u(x) ≤ max

(
0,max

∂Ω′
(u+ εz)

)
≤ max

(
0,max

∂Ω
(u+ εz) + εmax

Ω̄
z

)
.

This holds for all ε > 0 and hence the result follows.

As in the parabolic case, a uniqueness result follows.

2.2.7 Corollary. Under the assumptions of Theorem 2.2.6 let u,w ∈ C2(Ω)∩
C0(Ω̄) satisfy

Lu = Lw in Ω

u = w on ∂Ω.

Then u = w.

Strong maximum principles
In many situations the weak maximum principle is enough to deduce first a priori
estimates. However, in some situations it is useful to know that the maximum
can not be attained in the interior, unless the function is constant. This is the
statement of the strong maximum principle. The crucial lemma in the parabolic
case is the propagation of positivity, which is of independent interest, since it
nicely demonstrates the diffusive effect of the heat equation, namely that heat
tends to “spread out”. We follow [11], with few adjustments which are due to the
fact that we have not proven the weak maximum principle for general domains.

2.2.8 Lemma (Propagation of positivity). Let n ∈ N, α, r, t0 > 0, x0 ∈ Rn
and

Q = (t0, t0 + αr2)×Br(x0) ⊂ Rn+1.

Let P = aij∂2
ij + bi∂i + d − ∂t be a linear uniformly parabolic operator in a

neighborhood of Q with

∀(t, x) ∈ Q̄ ∀(ξi) ∈ Rn : λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2

for positive constants λ < Λ and also suppose in Q̄ that

|b|+ |d| ≤ Λ, d ≤ 0.

Let u ∈ C1;2(Q̄) satisfy
u ≥ 0, Pu ≤ 0

and
∃h > 0 ∃0 < ε <

1

2
∀x ∈ Bεr(x0) : u(t0, x) ≥ h.

Then there exists a positive constant κ = κ(α, λ,Λ, r), such that

∀x ∈ B r
2
(x0) : u(t0 + αr2, x) ≥ εκ

2
h.
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Proof. We may assume t0 = 0 and x0 = 0. The idea is to construct a barrier
for u in some domain Q̃, which we will call χ. It must be constructed to satisfy
Pχ > 0 in Q̃ and χ ≤ u on a suitable piece of the boundary ∂Q̃.5 Then we will
concluce χ ≤ u6. If χ is good enough, we can conclude the desired estimate for
u at time αr2.

Since we have information about u on the piece {0} × Bεr(0) and want to
obtain information on a bigger ball at later time, the most natural domain Q̃ is
a trapezoid,

Q̃ = {(t, x) ∈ Rn+1 : t ∈ (0, αr2), |x|2 < ϕ(t)} ⊂ Q,

where

ϕ(t) =
1− ε2

α
t+ ε2r2.

At positive times, the function u is only known to be non-negative, hence we
have no choice for the barrier, but to let it be zero on the boundary pieces
{t} × ∂B

ϕ
1
2 (t)

(0). However at the time αr2 we want the barrier to be positive

in {αr2}×B r
2
(0) and the simplest function to satisfy this would be a quadratic

one,
ψ(t, x) = (ϕ(t)− |x|2).

This could be a first guess. Let us see what it gives. The first thing we have to
calculate is Pψ. We have

ψ,i(t, x) = −2xi, ψ,ij(t, x) = −2δij , ψ̇ =
1− ε2

α
.

Hence

Pψ(t, x) = −2aij(t, x)δij − 2bi(t, x)xi + dψ(t, x)− 1− ε2

α
.

This does not seem promising yet, since the term −2aijδij does not have a good
sign. The function ψ is too concave. To make it more convex, we could square
it. We get

P (ψ2) = 2ψPψ + 2aijψ,iψ,j − dψ2

= 2ψPψ + 8aijxixj − dψ2

≥ 8λ|x|2 − 4ψ tr(a)− 4ψ|b||x| − 2|d|ψ2 − 2ψ
1− ε2

α
≥ 8λϕ− cψ,

where c = c(α, λ,Λ, r).
This looks better, but we still have to absorb the term involving ψ. As often

in the theory of the parabolic equations, one can exploit the t-direction7. In

5We have not defined the parabolic boundary for general domains in Rn+1, so we must
work around this.

6By a simple argument. The weak maximum principle is not needed here and we have
not proven it for general domains Q̃.

7as we have already seen in the proof of the weak maximum principle.
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order to produce a good term coming from the t-direction, we multiply ψ2 by a
(possibly heavily) decreasing function in t. It must only contain values, which
κ is allowed to depend on, hence ϕ seems to be a good candidate. Hence for
q > 0 we put

z = ϕ−qψ2.

Then
Pz = aijz,ij + biz,i + dz − ż

= ϕ−qP (ψ2) + qϕ−q−1 1− ε2

α
ψ2

≥ ϕ1−q
(

8λ− cψ
ϕ

+ q
1− ε2

α

ψ2

ϕ2

)
≥ ϕ1−q

(
8λ− c2 δ

2
+

(
q

1− ε2

α
− 1

2δ

)
ψ2

ϕ2

)
> 0

for small δ and large q. Now we have to take care about the boundary values.
In order to adjust z to be less than u on the bottom of the cylinder, we have to
multiply it by some factor. Put

χ = h(εr)2q−4z.

Let us compare χ with u. By construction there holds

χ(t, x) = 0 ≤ u ∀x ∈ ∂B
ϕ

1
2 (t)

(0).

Furthermore, for all |x| ≤ εr,

χ(0, x) = h(εr)2q−4(εr)−2q(ε2r2 − |x|2)2 ≤ h ≤ u(0, x).

At all other points in the closure of Q̃ it is not possible for χ − u to obtain
a positive maximum, since at such points we would have P (χ − u) ≤ 0, in
contradiction to Pχ > 0 and Pu ≤ 0. We conclude

χ ≤ u

throughout Q̃, which implies at t = αr2 and for all |x| < r/2:

u(αr2, x) ≥ h(εr)2q−4r−2q(r2 − |x|2)2 ≥ 9

16
hεκ.

We deduce the strong maximum principle.

2.2.9 Theorem (Parabolic strong maximum principle). Let n ∈ N, Ω ⊂ Rn
a domain, T > 0 and Q = (0, T )× Ω. Let

Pu = aiju,ij + biu,i + du− u̇

be locally8uniformly parabolic with locally bounded coefficients and d ≤ 0. Sup-
pose u ∈ C1;2(Q) satisfies Pu ≥ 0 and

∃(t0, x0) ∈ Q : sup
Q
u = u(t0, x0) ≥ 0,

8On each compact set the coefficients have this property.
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then
u|(0,t0]×Ω ≡ const .

Proof. It suffices to prove the constancy on (0, t0)× Ω. Let

M = u(t0, x0)

and suppose there exists (t, x) ∈ (0, t0)× Ω with

u(t, x) < M.

Let γ : [0, 1]→ Ω be a curve from x to x0 and

S = {σ ∈ [0, 1] : u(st0 + (1− s)t, γ(s)) < M ∀0 ≤ s ≤ σ}.

Then S ⊂ [0, 1] is an interval with 0 ∈ S. Furthermore, whenever 1 > s0 ∈ S,
due to continuity of u we find ε > 0, such that s0+ε ∈ S.9 We will now show that
S is also closed, then we conclude that S = [0, 1] and we have a contradiction.
Therefore let sk be a sequence in S which converges to s∞ ∈ [0, 1] from below
and set

tk = skt0 + (1− sk)t.

Choose a ball
Br(γ(s∞)) ⊂ Ω

and k so large that
γ(s∞) ∈ B r

2
(γ(sk)).

Due to continuity there exists 0 < ε < 1/2 and h > 0 such that

(M − u)(tk, y) ≥ h > 0 ∀y ∈ Bεr(γ(sk)).

Pick
α =

t∞ − tk
r2

and deduce from Lemma 2.2.8 that

(M − u) > 0

on {t∞} ×B r
2
(γ(sk)).

The elliptic strong maximum principle is a consequence of the parabolic one.

2.2.10 Theorem (Elliptic strong maximum principle). Let n ∈ N, Ω ⊂ Rn be
a domain and

Lu = aiju,ij + biu,i + du

be locally uniformly elliptic with locally bounded coefficients bi, d and d ≤ 0. Let
u ∈ C2(Ω) and Lu ≥ 0, then u does not attain a non-negative maximum in Ω,
unless u is constant.

9S is open in [0, 1].
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Proof. Suppose the set

A = {x ∈ Ω: u(x) = sup
Ω
u}

is not empty. Due to continuity A is certainly closed. We prove that A is
open. Let x0 ∈ A and Br(x0) ⊂ Ω. Let Q = (0, 1) × Br(x0) and set for all
(t, x) ∈ [0, 1]× Ω

v(t, x) = u(x).

Then v ∈ C2(Q̄) and P = L− ∂t is a linear uniformly parabolic operator in Q̄.
We have

Pv = Lv − v̇ = Lu ≥ 0.

Furthermore for all t,
v(t, x0) = max

Q̄
v

and hence v is constant on {t} × Br(x0), which means that u is constant on
Br(x0). This proves that A is open and hence A = Ω.

The Hopf lemma
We prove the Hopf boundary point lemma for parabolic equations. Similar
versions can be found in [11, Lemma II.2.8] and [4, Lemma 2.7.4].

2.2.11 Lemma. Let n ∈ N, T > 0, z ∈ Rn, x0 ∈ ∂Br(z), 0 < t0 < T and

Q = (0, T )×Br(z).

Let
P = aij∂2

ij + bi∂i + d− ∂t

be a linear uniformly parabolic operator in Q with bounded coefficients bi, d and
d ≤ 0. Let u ∈ C1;2(Q) ∩ C1(Q̄) satisfy

Pu ≥ 0, u(t0, x0) ≥ 0

and
∀(t, y) ∈ (0, T )× B̄r(z)\{(t0, x0)} : u(t0, x0) > u(t, y).

Then there holds
∂u

∂ν
(t0, x0) > 0,

where ν denotes the exterior normal to ∂B̄r(z) at x0.

Proof. Let 0 < ρ < r. In A ≡ B̄r(z)\Bρ(z) define

h(x) = e−α|x−z|
2

− e−αr
2

, α > 0.

Then in A we have for suitable λ > 0,

Ph(x) = e−α|x−z|
2

(4α2aij(xi − zi)(xj − zj)− 2αaijδij − 2αbi(xi − zi)) + dh

≥ e−α|x−z|
2

(4α2λ|x− z|2 − 2α(aii + |b||x− z|)− |d|)
> 0,
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if α is large enough. Since for all 0 < δ < t0 there holds

u|[δ,t0]×∂Bρ(z)∪{δ}×A < u(t0, x0),

we find ε > 0, such that in [δ, t0]× ∂Bρ(z) ∪ {δ} ×A there holds

w ≡ u− u(x0, t0) + εh ≤ 0.

Furthermore in [δ, t0]× int(A) we have

Pw = Pu− u(t0, x0)d+ εPh > 0.

Thus we conclude w ≤ 0 from the weak maximum principle, Theorem 2.2.2.
Since w(t0, x0) = 0, we obtain

0 ≤ ∂w

∂ν
(t0, x0) =

∂u

∂ν
(t0, x0) + ε

∂h

∂ν
(t0, x0),

from which the claim follows.

The elliptic version, originally due to Eberhard Hopf [7], is suggested as an
exercise.

2.2.12 Lemma (Eberhard Hopf). Let n ∈ N, B ⊂ Rn be a ball and x0 ∈ ∂B.
Let

L = aij∂2
ij + bi∂i + d

be a linear uniformly elliptic operator in B with bounded coefficients bi, d and
d ≤ 0. Let u ∈ C2(B) ∩ C1(B̄) satisfy

Lu ≥ 0, u(x0) ≥ 0

and
∀x ∈ B : u(x) < u(x0).

Then there holds
∂u

∂ν
(x0) > 0,

where ν is the outer normal to B in x0.

A corollary of the Hopf lemma is a uniqueness result for the Neumann prob-
lem, the proof of which is an exercise. First we need another definition.

2.2.13 Definition (Interior ball condition). Let Ω ⊂ Rn be open. For every
boundary point x0 ∈ ∂Ω we say that Ω satisfies an interior ball condition at x0,
if there exists a positive number r and a ball Br(x) such that

Br(x) ⊂ Ω, B̄r(x) ∩ ∂Ω = {x0}.

We say Ω satisfies an interior ball condition, if Ω satisfies an interior ball con-
dition at every x0 ∈ ∂Ω.

2.2.14 Exercise. Let Ω ⊂ Rn be a bounded domain that satisfies and interior
ball condition. Let

L = aij∂2
ij + bi∂i + d
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be a linear uniformly elliptic operator with bounded coefficients bi, d and d ≤ 0.
Let u ∈ C2(Ω) ∩ C1(Ω̄) satisfy the Neumann problem

Lu = 0 in Ω

∂u

∂ν
= 0 on ∂Ω,

then u is constant in Ω.

2.3 Comparison principles for fully nonlinear op-
erators

The maximum principle is not restricted to linear equations. In this section we
will employ the linear case to prove comparison principles for fully nonlinear
equations. First of all we have to say, when a fully nonlinear operator is elliptic
or parabolic. A good orientation for this section is [5].

Fully nonlinear elliptic and parabolic operators
2.3.1 Definition (Elliptic operators). Let n ∈ N and Ω ⊂ Rn open.

(i) Let
Γ ⊂ Rn

2

× Rn × R× Ω.

A partial differential operator of second order in Ω is a map

LF : A ⊂ C2(Ω)→ RΩ

u 7→ F (D2u,Du, u, ·),

where F = F (r, p, z, x) is a map F : Γ→ R andA is the set of F -admissable
functions, i.e.

∀u ∈ A ∀x ∈ Ω: (D2u(x), Du(x), u(x), x) ∈ Γ.

LF is called elliptic in u ∈ A, if

(
F ij(D2u(x), Du(x), u(x), x)

)
:=

(
∂F

∂rij
(D2u(x), Du(x), u(x), x)

)
sym

exists and is positive definite for all x ∈ Ω. For a set S ⊂ A, LF is called
elliptic operator in S, if LF is elliptic in all u ∈ S.10

(ii) Let S ⊂ A. LF is called strictly elliptic in S, if

∃λ > 0 ∀u ∈ S ∀(ξi) ∈ Rn : F ij(D2u,Du, u, ·)ξiξj ≥ λ|ξ|2

and uniformly elliptic in S, if

∃0 < λ < Λ ∀u ∈ S ∀(ξi) ∈ Rn : λ|ξ|2 ≤ F ij(D2u,Du, u, ·)ξiξj ≤ Λ|ξ|2.

10For a matrix A, Asym denotes its symmetrisation 1
2

(A+At).
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2.3.2 Example. (i) Every linear elliptic operator in an open set Ω is an el-
liptic operator in C2(Ω), since

Lu = aiju,ij + biu,i + du = F (D2u,Du, u, ·)

with
F (r, p, z, x) = aij(x)rij + bi(x)pi + d(x)z.

(ii) The Monge-Ampère-equation is

det(D2u) = f

with a function f ∈ C0(Ω). The corresponding differential operator is then

LF (u) = F (D2u) = det(D2u).

If r is invertible, from (1.6) we obtain

∂F

∂rij
(r) =

(
(det r)rij

)
sym

,

where r−1 = (rij). Hence LF is elliptic all all strictly convex u.

2.3.3 Exercise. The equation of prescribed mean curvature is

H(D2u,Du, u, ·) := div

(
∇u√

1 + |∇u|2

)
= f.11

Prove that on each set

Ac = {u ∈ C2(Ω): |∇u|2 ≤ c}

LH is uniformly elliptic.

We have a similar definition for the parabolic case.

2.3.4 Definition (Parabolic operators). Let n ∈ N, Ω ⊂ Rn open, 0 < T ≤ ∞
and Q = (0, T )× Ω

(i) Let
Γ ⊂ Rn

2

× Rn × R×Q.

A partial differential operator of second order in Q of the special form

PF : A ⊂ C1;2(Q)→ RQ

u 7→ F (D2
xu,Dxu, u, ·)− u̇,

where F = F (r, p, z, t, x) is a map F : Γ → R and A is the set of F -
admissable functions, i.e.

∀u ∈ A ∀(t, x) ∈ Q : (D2
xu(t, x), Dxu(t, x), u(t, x), t, x) ∈ Γ,

11Recall the relation between Du and ∇u, cf. Definition 1.4.5.
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is called parabolic in u ∈ A, if

F ij :=

(
∂F

∂rij
(D2

xu(t, x), Dxu(t, x), u(t, x), t, x)

)
sym

exists and is positive definite for all (t, x) ∈ Q. For a set S ⊂ A, PF is
called parabolic operator in S, if PF is parabolic in all u ∈ S.

(ii) Let S ⊂ A. PF is called strictly parabolic in S, if

∃λ > 0 ∀u ∈ S ∀(ξi) ∈ Rn : F ij(D2
xu,Dxu, u, ·)ξiξj ≥ λ|ξ|2

and uniformly parabolic in S, if

∃0 < λ < Λ ∀u ∈ S ∀(ξi) ∈ Rn : λ|ξ|2 ≤ F ij(D2
xu,Dxu, u, ·)ξiξj ≤ Λ|ξ|2.

2.3.5 Example (Mean curvature flow). The differential equation

∂tu =
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)

is called the (graphical) mean curvature flow. As in Exercise 2.3.3 we can check
that the mean curvature flow is uniformly parabolic on each set of functions
with bounded spatial gradient.

Comparison principles
Now we prove versions of the maximum principle for general (fully nonlinear)
elliptic and parabolic operators. In this context they are called comparison
principles. We start with the elliptic case.

2.3.6 Theorem (Elliptic comparison principle). Let n ∈ N and Ω ⊂ Rn open
and bounded,

Γ ⊂ Rn
2

× Rn × R× Ω

and F ∈ RΓ continuously differentiable in its first three variables. Let u, v ∈
C2(Ω) ∩ C0(Ω̄) and let LF be a strictly elliptic operator on

S = {τu+ (1− τ)v : τ ∈ [0, 1]}

with
∃c > 0 ∀w ∈ S ∀x ∈ Ω:

∣∣∣∣∂F∂p (D2w(x), Dw(x), w(x), x)

∣∣∣∣ ≤ c
and

∀w ∈ S :
∂F

∂z
(D2w,Dw,w, ·) ≤ 0.

Suppose u, v satisfy

F (D2u,Du, u, ·) ≥ F (D2v,Dv, v, ·) in Ω,

u ≤ v on ∂Ω

then there holds
u ≤ v in Ω.
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Proof. Define
χ = u− v.

There holds

0 ≤ F (D2u,Du, u, ·)− F (D2v,Dv, v, ·)

=

ˆ 1

0

d

dτ
F (τD2u+ (1− τ)D2v, τDu+ (1− τ)Dv, τu+ (1− τ)v, ·) dτ

=

ˆ 1

0

F ijχij +

ˆ 1

0

∂F

∂pi
χi +

ˆ 1

0

∂F

∂z
χ

= aijχ,ij + b,iχi + dχ

with

aij =

ˆ 1

0

F ij(τD2u+ (1− τ)D2v, τDu+ (1− τ)Dv, τu+ (1− τ)v, ·) dτ

and similarly for bi and d. Thus χ satisfies the linear problem

Lχ ≡ aijχ,ij + biχ,i + dχ ≥ 0 in Ω,

χ ≤ 0 on ∂Ω

with positive definite (aij) and

|b|
λ
≤ c, d ≤ 0.

The weak maximum principle, Theorem 2.2.6, gives

χ ≤ 0

in all of Ω.

The parabolic case is similar.

2.3.7 Theorem (Parabolic comparison principle). Let n ∈ N and Ω ⊂ Rn
open and bounded, 0 < T ≤ ∞, Q = (0, T )× Ω,

Γ ⊂ Rn
2

× Rn × R×Q

and F ∈ RΓ continuously differentiable in its first three variables. Let u, v ∈
C1;2(Q) ∩ C0(Q̄) and let PF be a strictly parabolic operator on

S = {τu+ (1− τ)v : τ ∈ [0, 1]}

with
∀w ∈ S :

∂F

∂z
(D2

xw,Dxw,w, ·) ≤ 0.

Suppose u, v satisfy

F (D2
xu,Dxu, u, ·)− u̇ ≥ F (D2

xv,Dxv, v, ·)− v̇ in Q,
u ≤ v on ∂pQ

then there holds
u ≤ v in Q.
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Proof.
χ = u− v.

There holds

0 ≤ F (D2
xu,Dxu, u, ·)− u̇− F (D2

xv,Dxv, v, ·) + v̇

=

ˆ 1

0

d

dτ
(F (τD2

xu+ (1− τ)D2
xv, τDxu+ (1− τ)Dxv, τu+ (1− τ)v, ·))

− (τ u̇+ (1− τ)v̇) dτ

=

ˆ 1

0

F ijχij +

ˆ 1

0

∂F

∂pi
χi +

ˆ 1

0

∂F

∂z
χ− χ̇

= aijχ,ij + biχ,i + dχ− χ̇

with

aij =

ˆ 1

0

F ij(tD2
xu+ (1− t)D2

xv, tDxu+ (1− t)Dxv, tu+ (1− t)v, ·) dt

and similarly for bi and d. Thus χ satisfies the linear problem

Pχ ≡ aijχ,ij + biχ,i + dχ− χ̇ ≥ 0 in Q,
χ ≤ 0 on ∂Q

with positive definite (aij) and d ≤ 0. The weak maximum principle, Theo-
rem 2.2.2, gives

χ ≤ 0

in all of Q.
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Chapter 3

Sobolev-Spaces

Until now we have obtained some uniqueness results for various kinds of PDE,
e.g.

∆u = f in Ω

u = ϕ on ∂Ω,

but we have not said anything about actual existence of a solution. Even if f
is smooth, it can be difficult to prove existence of a smooth solution directly,
since the spaces Ck(Ω̄) are relatively small for this purpose. So the strategy is
to widen the space, in which we look for solutions. Hence we leave the class
of differentiable functions and look instead at the space of weakly differentiable
functions, the so-called Sobolev-spaces W k,p(Ω). Here one can use Banach-
or Hilbertspace methods to get existence of a weak solution relatively easy.
Afterwards we will show how smooth this weak solution actually is, dependening
on the right hand side f .

The present chapter is devoted to provide the necessary theory of the Sobolev
spaces. Good sources for this chapter are [5, Ch. 7] and [17].

3.1 Elements of functional analysis
The theory of weak solutions to partial differential equations requires some
basic knowledge in functional analysis, which was promised not to be required
to follow this course. Hence this section is devoted to provide the results we
need. During the following weeks, this is a dynamic section, which means that
it grows while we are already talking about Sobolev spaces. This strategy has
two advantages: Firstly you will see the theory of functional analysis “in action”
right away and secondly the various results will not be scattered around within
the rest of this chapter, but will be thoroughly collected in this one section.

Mollifiers and smooth approximation
The following construction is an extremely useful tool to carry over properties
of smooth functions to less smooth functions.

3.1.1 Definition (Mollifier). Let n ∈ N and Ω ⊂ Rn open.
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(i) A mollifier is a non-negative function η ∈ C∞c (Rn) with

supp η ∈ B̄1(0),

ˆ
Rn
η = 1.

(ii) For a mollifier η, a function u ∈ L1
loc(Ω), Ω′ b Ω and 0 < ε < dist(Ω′, ∂Ω)

we define their ε-convolution by

uε(x) =

ˆ
Rn
ηε(x− y)u(y) dy ∀x ∈ Ω′,

where
ηε(x) = ε−nη

(x
ε

)
.

A special feature of the convolution is, as a rule of thumb, that it approx-
imates a function locally as strongly as the function actually is. The proof of
the following proposition is an exercise.

3.1.2 Proposition. Let n ∈ N, Ω ⊂ Rn be open, ε > 0, η a mollifier and
u ∈ L1

loc(Ω). Then there hold:

(i)
∀Ω′ b Ω ∀ε < dist(Ω′, ∂Ω): uε ∈ C∞(Ω′).

(ii) If u ∈ Ck(Ω) for 0 ≤ k <∞, then

∀Ω′ b Ω: lim
ε→0
|uε − u|k,Ω′ = 0.

(iii) If u ∈ Lploc(Ω), p <∞, then

∀Ω′ b Ω: lim
ε→0
‖uε − u‖p,Ω′ = 0.

(iv) C∞c (Ω) is dense in Lp(Ω), if p <∞.

As an application we prove one of the most important tools in analysis, the
fundamental lemma of the calculus of variations.

3.1.3 Lemma (Fundamental lemma of the calculus of variations). Let n ∈ N,
Ω ⊂ Rn open, f ∈ L1

loc(Ω) and suppose

∀ϕ ∈ C∞c (Ω):

ˆ
Ω

fϕ ≥ 0.

Then there holds f ≥ 0 almost everywhere in Ω.

Proof. We have to show that

Ln(E) = Ln({f < 0}) = 0.

We may assume that Ē ⊂ Ω is compact, otherwise consider a countable ex-
haustion of Ω by compactly contained sets. Since χE ∈ L1(Ω), there exist
gn ∈ C∞c (Ω) with

gn =

ˆ
Rn
ηεn(· − y)χE(y) dy → χE
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in L1
loc(Ω) and pointwise almost everywhere in E with a sequence εn → 0. Due

to the Lebesgue convergence theorem we get

0 ≤
ˆ

Ω

fgn →
ˆ

Ω

fχE .

Due to f|E < 0 we obtain Ln(E) = 0.

Linear operators
We collect some basics about linear maps between normed spaces and follow [3,
Sec. 2.7].

3.1.4 Proposition. Let E and F be normed vector spaces over K and

A : E → F

be a linear map.1 Then A is continuous if and only if there exists a constant
c > 0, such that

‖Ax‖ ≤ c‖x‖ ∀x ∈ E.2

Proof. If such a constant exists, then

‖Ax−Ay‖ ≤ c‖x− y‖

and A is continuous. Now suppose A is continuous. If c does not exists, then
there exists a sequence xn ∈ E such that

‖Axn‖ > n‖xn‖.

Thus
1 ≤

∥∥∥∥A( xn
n‖xn‖

)∥∥∥∥→ 0,

a contradiction.

3.1.5 Definition. Let E and F be normed vector spaces over K.

(i) Define L(E,F ) to be the K-vector space of continuous linear maps from
E to F . For A ∈ L(E,F ) define

‖A‖L(E,F ) = inf{c ≥ 0: ‖Ax‖ ≤ c‖x‖ ∀x ∈ E}.

(ii) We also write
E′ = L(E,K).

3.1.6 Exercise. Let E and F be normed vector spaces over K.

1A linear map between normed spaces is often called linear operator and if F = K it is
also called linear functional.

2If no ambiguities are possible, we do not distinguish the norms in E and F notationally.
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(i) Prove that (L(E,F ), ‖ · ‖L(E,F )) is a normed vector space over K, which
is complete if F is complete.

(ii) There holds for all A ∈ L(E,F ):

‖A‖ = sup
x∈E\{0}

‖Ax‖
‖x‖

.

(iii) Let (H, g) be an inner product space. Then there holds the Cauchy-
Schwarz inequality

|g(x, y)| ≤ ‖x‖g‖y‖g.

The Riesz representation theorem
In Hilbert spaces H every continuous linear functional is given as a scalar prod-
uct with a fixed x ∈ H. To prove this, we need a lemma.

3.1.7 Lemma (Projection onto closed subspaces). Let (H, g) be a Hilbert space
over R3 and M a closed subspace. Then for all x ∈ H there exist y ∈M and

z ∈M⊥ := {z ∈ H : g(x, z) = 0 ∀x ∈M},

such that
x = y + z.

Proof. We may suppose x /∈M . Define

d = dist(x,M)

and let (yn)n∈N be a minimizing sequence, i.e.

d(x, yn)→ d.

We have

‖yn − ym‖2g = 2‖x− yn‖2g + 2‖x− ym‖2g − 4

∥∥∥∥x− 1

2
(yn + ym)

∥∥∥∥2

g

≤ 2‖x− yn‖2g + 2‖x− ym‖2g − 4d2

→ 0,

as n,m→∞. Hence (yn) is a Cauchy sequence which has a limit y ∈M . Put

z = x− y,

then for all y′ ∈M there holds

0 =
d

dt
‖x− (y + ty′)‖2g,|t=0 = −2g(z, y′)

and hence z ∈M⊥.

3only for simplicity
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3.1.8 Theorem (Riesz representation theorem). Let (H, g) be a Hilbert space
over R. Then the map

J : H → H ′

y 7→ g(·, y)

is a norm preserving linear bijection.

Proof. J maps to H ′, since J(y) is linear and for all x ∈ H

|J(y)x| ≤ |g(x, y)| ≤ ‖y‖g‖x‖g.

J is obviously linear and we have

‖J(y)‖H′ ≤ ‖y‖.

From J(y)y = ‖y‖2g we also obtain

‖J(y)‖H′ ≥ ‖y‖g.

Hence J is norm preserving and thus injective. It remains to prove the surjec-
tivity. Hence let ψ ∈ H ′. If ψ = 0 we take 0 ∈ H. Otherwise pick z ∈ H with
the properties

‖z‖ = 1, g(z, y) = 0 ∀y ∈ ker(ψ).

For all x ∈ H we have
x− ψ(x)

ψ(z)
z ∈ ker(ψ)

and thus
g (x, ψ(z)z) = ψ(x) ∀x ∈ H.

Weak compactness in Hilbert spaces
The closed unit ball in Rn is compact. But infinite dimensional Banach spaces
this is not true anymore. However, in this situation it is weakly compact, as we
will prove in this subsection.

3.1.9 Definition (Weak convergence). Let (E, ‖ ·‖) be a normed vector space
over K. A sequence (xn)n∈N converges weakly to x ∈ E, if

∀φ ∈ E′ : φ(xn)→ φ(x).

In this case we write
xn ⇀ x.

Before we can prove the weak compactness of bounded sets in Hilbert spaces,
we recall the following very useful construction.

3.1.10 Lemma (Cantor’s diagonal sequence). Let A,B be sets, M a metric
space and

g : A×B →M

a map. Let (xn)n∈N and (yk)k∈N be sequences in A resp. B, such that for all
k ∈ N the sequence (g(xn, yk))n∈N has a convergent subsequence. Then there
exists a subsequence (xi)i∈N of (xn)n∈N, such that

∀k ∈ N ∃αk ∈M : lim
i→∞

g(xi, yk) = αk.
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Proof. We construct a sequence of subsequences of (xn)n∈N inductively. Since
(g(xn, y1))n∈N has a convergent subsequence, there exists a first subsequence
(xn1

j
)j∈N and α1 ∈M , such that

lim
j→∞

g
(
xn1

j
, y1

)
→ α1.

Let m subsequences (xn1
j
)j∈N, . . . , (xnmj )j∈N of (xn)n∈N and α1, . . . , αm be con-

structed, such that for all all 1 ≤ l ≤ m − 1, (nl+1
j )j∈N is a subsequence of

(nlj)j∈N and all 1 ≤ l ≤ m there holds

g(xnlj , yl)→ αl.

The sequence (g(xnmj , ym+1))j∈N contains a convergent subsequence

lim
j→∞

g
(
xnm+1

j
, ym+1

)
= αm+1.

We have constructed a sequence of subsequences ((xnmj )j∈N)m∈N with the prop-
erties that (nm+1

j )j∈N is a subsequence of (nmj )j∈N and

∀m ∈ N : lim
j→∞

g(xnmj , ym) = αm. (3.1)

Then the diagonal sequence

(xi)i∈N =
(
xnii

)
i∈N

has the property
∀k ∈ N : lim

i→∞
g(xi, yk) = αk,

since for every k ∈ N, the sequence (xnii)i≥k is a subsequence of (xnki )i∈N and
the latter satisfies (3.1).

3.1.11 Theorem. Let (H, g) be a Hilbert space over R, then every bounded
sequence (xn)n∈N in H has a weakly convergent subsequence.

Proof. By the Riesz representation theorem it suffices to prove:

∃x ∈ H ∀y ∈ H : g(xn, y)→ g(x, y).

First suppose that there exists a countable dense set {yk}k∈N in H. By Cantor’s
diagonal method we obtain a subsequence (xi)i∈N of (xn) with the property

∀k ∈ N ∃αk ∈ R : lim
i→∞

g(xi, yk) = αk.

Define
ψ(yk) = lim

i→∞
g(xi, yk) = αk,

then ψ is a continuous linear map on span(yk)k∈N due to the boundedness of
(xi)i∈N. Hence it may be extended to a bounded linear functional ψ ∈ H ′, for
which we find x ∈ H with

∀y ∈ H : ψ(y) = g(y, x).
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Hence for all y ∈ H

|g(xi, y)− g(x, y)| ≤ |g(xi, y)− g(xi, yk)|+ |g(xi, yk)− g(x, yk)|
+ |g(x, yk)− g(x, y)|
≤ (c+ ‖x‖)‖yk − y‖+ |g(xi, yk)− g(x, yk)|.

Choosing ‖y − yk‖ small and then i large gives

∀y ∈ H : g(xi, y)→ g(x, y).

If there is no countable dense subset, first apply the previous result to

H0 = span(xn)n∈N

and obtain a subsequence (xi) and x ∈ H0 such that

∀y ∈ H0 : g(xi, y)→ g(x, y).

For arbitrary y ∈ H let, according to Lemma 3.1.7,

y = y1 + y0,

where y0 ∈ H0 and y1 ∈ H⊥0 . Then

g(xi, y) = g(xi, y0)→ g(x, y0) = g(x, y).

We will also need the following fact.

3.1.12 Proposition (Weak lower semicontinuity). Let (H, g) be a Hilbert
space and suppose xn ⇀ x. Then

‖x‖g ≤ lim inf
n→∞

‖xn‖g.

Proof.
‖x‖2g = g(x, x) = lim inf

n→∞
g(xn, x) ≤ lim inf

n→∞
‖xn‖g‖x‖g.

Fredholm alternative in Hilbert spaces
From elementary linear algebra we know that a linear map from Rn to itself is
injective if and only if it is surjective. In infinite dimensional space this is not
true in general, as can be seen from the shift operator on l∞(R)

(xn)n∈N 7→ (0, x1, x2, . . . ).

However, for certain “small” perturbations of the identity this is still true and
we will prove this now. For simplicity we restrict to Hilbert spaces again.

3.1.13 Definition. Let E and F be normed vector spaces over K and

A : E → F

be a linear map. A is called compact, if for every bounded sequence (xn)n∈N, a
subsequence of (Axn)n∈N converges in F .
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3.1.14 Theorem (Fredholm alternative). Let (H, g) be a real Hilbert space
and T : H → H compact. Then I − T is injective if and only if I − T is
surjective. In this case (I − T )−1 is continuous.

Proof. Let S := I − T . We write ‖ · ‖ = ‖ · ‖g. The proof contains four steps.
(i)

∃c > 0 ∀x ∈ H : dist(x, ker(S)) ≤ c‖Sx‖, (3.2)

since if (3.2) was wrong, then

∃xn ∈ H : dn = dist(xn, ker(S)) > n‖Sxn‖

w.l.o.g. ‖Sxn‖ = 1, such that dn > n. Choose yn ∈ ker(S) such that

dn ≤ ‖xn − yn‖ ≤ 2dn. (3.3)

and define
zn :=

xn − yn
‖xn − yn‖

.

Then
‖zn‖ = 1, ‖Szn‖ =

‖Sxn‖
‖xn − yn‖

≤ 1

dn
→ 0.

Szn = zn − Tzn and T is compact, we get

zn → y0

for a subsequence and hence

Szn → Sy0 = 0,

which implies y0 ∈ ker(S), which is a contradiction, since

dist(zn, ker(S)) = inf
y∈ker(S)

∥∥∥∥ xn − yn
‖xn − yn‖

− y
∥∥∥∥

= inf
y∈ker(S)

1

‖xn − yn‖
‖xn − y‖ =

dn
‖xn − yn‖

≥ 1

2
,

by (3.3).
(ii) The image of S, R = R(S), is closed: Suppose

Sxn → y ∈ H.

Step (i) implies that dn ≤ c‖Sxn‖ and the latter is bounded. Choose yn ∈ ker(S)
as in (3.3). Then

wn = xn − yn
is bounded and

Swn = Sxn → y.

Since T is compact, there holds Twn → w0 for a subsequence and hence

wn → y + w0

and
S(y + w0) = y.
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(iii)
ker(S) = {0} ⇒ R = R(S) = H.

Suppose the claim was wrong and define Rj := Sj(H). Then Rj ⊂ Rj−1. Con-
sider

S : Rj → Rj .

Then by step (ii) Rj+1 is closed. We claim

∃k ∈ N ∀j ≥ k : Rj = Rk.

Otherwise choose orthogonal elements

xn ∈ Rn : ‖xn‖ = 1, xn ⊥ Rn+1.

Let n > m, then

Txm − Txn = xm + (−xn − Sxm + Sxn)

and hence
‖Txm − Txn‖ ≥ 1,

which is in contradiction to the compactness of T . So let y ∈ H, then Sky ∈
Rk = Rk+1, then

0 = Sky − Sk+1x = Sk(y − Sx),

y = Sx

and thus S is surjective.
(iv)

R = H ⇒ ker(S) = {0}.

The sequence Nj = ker(Sj) consists of closed subspaces

Nj ⊂ Nj+1, j ≥ 1.

We claim that
∃k ∈ N ∀j ≥ k : Nj = Nk.

If the claim was wrong, then

∃xm ∈ Nm : ‖xm‖ = 1, xm ⊥ Nm−1.

Let m > n then, analogously to step (iii), we obtain a contradiction due to

Txm − Txn = xm + (−xn − Sxm + Sxn),

since S(Ni) ⊂ Ni−1. So suppose R = H, then for all k there holds R(Sk) = H.
Hence

∀y ∈ Nk ∃x ∈ H : 0 = Sky = S2kx.

Then
x ∈ N2k = Nk,

hence y = 0 and
ker(S) = N1 ⊂ Nk = {0}.
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Theorem of Lax-Milgram
We need a refinement of the Riesz representation theorem. For this we need a
lemma, the proof of which is an exercise.

3.1.15 Exercise. Let (H, g) be a real Hilbert space and T ∈ L(H,H) satisfy

∃c > 0 ∀x ∈ H : ‖x‖g ≤ c‖Tx‖g.

Prove that T (H) ⊂ H is a closed subspace.

3.1.16 Theorem (Lax-Milgram). Let (H, g) be a real Hilbert space and B : H×
H → R be a bilinear form, which is bounded, i.e.

∃c > 0 ∀x, y ∈ H : |B(x, y)| ≤ c‖x‖g‖y‖g

and coercive, i.e.
∃λ > 0 ∀x ∈ H : B(x, x) ≥ λ‖x‖2g.

Then for every ψ ∈ H ′ there exists a unique v ∈ H, such that

B(·, v) = ψ.

Proof. Let w ∈ H. By the Riesz representation theorem there exists a unique
Tw ∈ H, such that

B(·, w) = g(·, Tw).

This defines a linear map T : H → H. There holds

‖Tw‖2g = B(Tw,w) ≤ c‖w‖g‖Tw‖g

and hence T ∈ L(H,H). Furthermore

λ‖w‖2g ≤ B(w,w) = g(w, Tw) ≤ ‖w‖g‖Tw‖g

and hence
∀w ∈ H : ‖Tw‖g ≥ λ‖w‖g.

Hence T is injective and has closed range. Suppose T (H) 6= H. Then there
exists an orthonormal element z ∈ H, i.e.

∀w ∈ H : g(z, Tw) = 0.

Putting w = z we obtain B(z, z) = 0 and hence z = 0. Thus T is bijective with
continuous inverse.

Now let ψ ∈ H ′ be given, and w be such that

g(·, w) = ψ.

Set
v = T−1w

and obtain
B(·, v) = g(·, w) = ψ.
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Compactness in function spaces
Later we need two important theorems, which characterise compactness of sub-
sets in Hölder- and Lp-spaces. The first one is the theorem of Arzela-Ascoli.
We follow [3].

3.1.17 Theorem (Arzela-Ascoli). Let n ∈ N, Ω b Rn open. Then the closure
of a set Λ ⊂ C0(Ω̄) is compact if and only if for every x ∈ Ω̄ the set

Λ(x) = {f(x) : f ∈ Λ}

is bounded and Λ is equicontinuous, i.e.

∀ε > 0 ∃δ > 0 ∀f ∈ Λ ∀x, y ∈ Ω̄ : |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Proof. “⇒”: Compact sets in metric spaces are always bounded, since they can
be covered by finitely many balls. Hence Λ̄ ⊂ C0(Ω̄) is bounded and hence for
all x ∈ Ω̄ and f ∈ Λ:

|f(x)| ≤ |f |0,Ω ≤ c.

If Λ was not equicontinuous, then there existed ε > 0 and sequences (fn)n∈N in
Λ and (xn)n∈N, (yn)n∈N in Ω̄, such that

|xn − yn| <
1

n
, |fn(xn)− fn(yn)| ≥ ε.

Due to the compactness of Λ̄ and Ω̄, we find a sequence of indices nk such that

fnk → f ∈ C0(Ω̄), xnk → x, ynk → x.

But then

|fnk(xnk)− fnk(ynk)| ≤ |fnk(xnk)− f(xnk)|+ |f(xnk)− f(ynk)|
+ |f(ynk)− fnk(ynk)|
≤ 2|fnk − f |0,Ω + |f(xnk)− f(ynk)|
→ 0,

a contradiction.
“⇐”: Ω has a countable dense subset D = {yk}k∈N, e.g. Qn∩ Ω̄. We have to

prove that every sequence (fn)n∈N in Λ̄ has a uniformly convergent subsequence.
Setting

g : Λ̄× Ω̄→ R
g(f, y) = f(y),

we see that g, (fn) and (yk) satisfy the assumption of Cantor’s diagonal se-
quence lemma, Lemma 3.1.10, and hence there exists a subsequence (fi)i∈N
that converges pointwise,

∀k ∈ N ∃αk ∈ R : lim
i→∞

fi(yk) = αk =: f(yk).

The function f : D → R is uniformly continuous, since for ε > 0 we may pick
δ > 0 such that for all i there holds

|yk − ym| < δ ⇒ |fi(yk)− fi(ym)| < ε
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and hence for |yk − ym| < δ there holds

|f(yk)− f(ym)| ≤ |f(yk)− fi(yk)|+ |fi(yk)− fi(ym)|+ |fi(ym)− f(ym)|
≤ |f(yk)− fi(yk)|+ ε+ |fi(ym)− f(ym)|

and
|f(yk)− f(ym)| = lim sup

i→∞
|f(yk)− f(ym)| ≤ ε.

Thus f is uniformly continuous on a dense subset of Ω̄ and may be extended
uniquely to a continuous function on Ω̄.4 All that is left to show is the uniform
convergence of fi to f . Let ε > 0 and pick δ > 0 such that for all h ∈ {fi}i∈N ∪
{f} there holds

|x− y| < δ ⇒ |h(x)− h(y)| < ε.

Then finitely many of the balls Bδ(yk) cover Ω̄ and we obtain for all x ∈ Ω̄:

|f(x)− fi(x)| ≤ min
1≤j≤N

(
|f(x)− f(ykj )|+ |fi(ykj )− fi(x)|

)
+ max

1≤j≤N
|f(ykj )− fi(ykj )|

≤ 2ε+ max
1≤j≤N

|f(ykj )− fi(ykj )|

and the uniform convergence follows.

3.1.18 Corollary. Let n ∈ N, Ω b Rn open and 0 < α ≤ 1. Then the
inclusion map

C0,α(Ω̄) ↪→ C0(Ω̄)

is compact.

Proof. First of all, every function f ∈ C0,α(Ω̄) extends to a continuous function
on Ω̄. Let (fn)n∈N be bounded in C0,α(Ω̄), then

|fn(x)− fn(y)| ≤ [fn]α,Ω|x− y| ≤ c|x− y|

and hence the set {fn}n∈N is pointwisely bounded and equicontinuous. By
Arzela-Ascoli it has a uniformly convergent subsequence.

A similar result holds in Lp-spaces.

3.1.19 Theorem (Kolmogorov). Let n ∈ N, Ω b Rn open and 1 ≤ p < ∞.
The closure of a subset M ⊂ Lp(Ω) is compact if and only if M5 is bounded and
equicontinuous in the mean, i.e.

∀ε > 0 ∃δ > 0 ∀u ∈M : 0 ≤ |h| < δ ⇒ ‖u− u(·+ h)‖p,Rn < ε.

Proof. Let M̄ ⊂ Lp(Ω) be compact. Then M is bounded. Let ε > 0. Then
there exist (ui)1≤i≤N in M̄ , such that

M ⊂
N⋃
i=1

Bε(ui).

4This statement shall be proven as an exercise.
5More precisely: The set M̃ of functions in M , which are extended to Rn by zero
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Let u ∈M , then u ∈ Bε(ui0) and

‖u(·+ h)− u‖p,Rn ≤ min
1≤i≤N

(‖u(·+ h)− ui(·+ h)‖p,Rn + ‖ui − u‖p,Rn)

+ max
1≤i≤N

‖ui(·+ h)− ui‖p,Rn

< 2ε+ max
1≤i≤N

‖ui(·+ h)− ui‖p,Rn ,

and the equicontinuity in the mean follows. We have used that a finite collection
of functions is equicontinuous in the mean.6

Now suppose M is bounded and equicontinuous in the mean. Then this is
also true for M̄ . For δ > 0 let (ηδ) be a Dirac sequence. Let

uδ = u ∗ ηδ.

Then

|uδ(x)− u(x)|p =

∣∣∣∣∣
ˆ
Bδ(0)

ηδ(y)(u(x− y)− u(x))

∣∣∣∣∣
p

dy

=

∣∣∣∣∣
ˆ
Bδ(0)

η
p−1
p

δ (y)η
1
p

δ (y)(u(x− y)− u(x))

∣∣∣∣∣
p

dy

≤
ˆ
Bδ(0)

ηδ(y)|u(x− y)− u(x)|pdy

and hence ˆ
Rn
|uδ − u|p ≤

ˆ
Bδ(0)

ηδ(y)

ˆ
Rn
|u(x− y)− u(x)|pdxdy.

The equicontinuity implies

sup
u∈M̄

‖uδ − u‖p,Rn ≤ sup
u∈M̄

sup
|y|<δ

‖u(x− y)− u(x)‖p,Rn → 0 (3.4)

as δ → 0.
Now we claim that the closure of Mδ := {uδ : u ∈ M̄} ⊂ C0(Ω̄) =: E7 is

compact in E. We have for any x ∈ Ω̄ and u ∈ M̄ :

|uδ(x)| ≤
ˆ
Bδ(0)

η
1− 1

p

δ (y)η
1
p

δ (y)|u(x− y)|dy

≤

(ˆ
Bδ(0)

ηδ(y)|u(x− y)|p dy

) 1
p

≤ sup
Bδ

|ηδ|
1
p ‖u‖p,Rn ≤ c.

Furthermore, for all x ∈ Ω and x+ h ∈ Ω,

|uδ(x+ h)− uδ(x)| ≤
ˆ
Bδ(0)

η
1− 1

p

δ (y)η
1
p

δ (y)|u(x+ h− y)− u(x− y)|dy

≤ sup
Bδ(0)

|ηδ|
1
p ‖u(·+ h)− u‖p,Rn .

6The proof of this is an exercise.
7We restrict every uδ to Ω̄.
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Thus Mδ is equicontinuous and by Arzela-Ascoli M̄δ is compact in C0(Ω̄). Now
let (un)n∈N be a sequence in M̄ and (δk)k∈N a sequence with δk → 0. The map

g : M̄ × (0,∞)→ C0(Ω̄)

(u, δ) 7→ uδ

and the sequences (un)n∈N and (δk)k∈N satisfy the assumption of Cantor’s di-
agonal lemma and hence there is a subsequence (ui)i∈N such that for every
k ∈ N

uiδk → vδk

in C0(Ω̄). We claim that (uiδi)i∈N is an Lp(Ω)-Cauchy sequence:

‖uiδi − u
j
δj
‖p,Ω ≤ ‖uiδi − u

i
δk
‖p,Ω + ‖uiδk − u

j
δk
‖p,Ω + ‖ujδk − u

j
δj
‖p,Ω

≤ sup
u∈M̄

‖uδi − uδk‖p,Ω + sup
u∈M̄

‖uδk − uδj‖p,Ω + ‖uiδk − u
j
δk
‖p,Ω

≤ sup
u∈M̄

‖uδi − u‖p,Ω + sup
u∈M̄

‖u− uδj‖p,Ω + 2 sup
u∈M̄

‖u− uδk‖p,Ω

+ ‖uiδk − u
j
δk
‖p,Ω.

Due to (3.4) we may, for given ε > 0, pick k so large that

‖uiδi − u
j
δj
‖p,Ω ≤ 2ε+ sup

u∈M̄
‖uδi − u‖p,Ω + sup

u∈M̄
‖u− uδj‖p,Ω + ‖uiδk − u

j
δk
‖p,Ω.

Picking i, j large enough gives

‖uiδi − u
j
δj
‖p,Ω ≤ 5ε.

Hence there exists v ∈ Lp(Ω) such that

uiδi → v.

Furthermore
‖ui − uiδi‖p,Ω ≤ sup

u∈M̄
‖u− uδi‖p,Ω → 0

as i→∞ and hence (ui) is the desired convergent subsequence.

Abstract eigenvalue problems
Due the maximum principle we know that any solution u ∈ C2(Ω) ∩ C0(Ω̄) of

−∆u = λu in Ω

u|∂Ω = 0

must be zero, provided λ ≤ 0. What happens in case λ > 0? Put in a different
way: Are there nontrivial eigenfunctions of the Laplace operator with Dirichlet
boundary condition? In this subsection we will answer this question in an
abstract Hilbert space setting to prove that there are weak eigenfunctions. Later
we will see that these are actually smooth.
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3.1.20 Lemma. Let (H, g) be a real Hilbert space, K a symmetric, continuous
and compact bilinear form8 on H, such that

∀u 6= 0: K(u) := K(u, u) > 0

and B a symmetric, continuous bilinear form on H, which is coercive relative
K, i.e.

∃c0, c > 0 ∀u ∈ H : B(u) := B(u, u) ≥ c‖u‖2g − c0K(u).

Let {0} 6= V ⊂ H be a closed subspace. Then the variational problem

B(v)→ min, v ∈W := V ∩ {K(v) = 1}

has a solution u, which is also a solution of

B(v)

K(v)
→ min, 0 6= v ∈ V.

Setting

λ = inf
0 6=v∈V

B(v)

K(v)
,

then we have
∀v ∈ V : B(u, v) = λK(u, v).

Proof. By coercivity we see, that B is bounded below in W and that a minimal
sequence uε is bounded above. Thus we suppose

uε ⇀ u ∈ V

and deduce
K(uε)→ K(u) = 1.

Because B + c0K is an equivalent norm on H, B + c0K is weakly lower semi-
continuous and hence

B(u) + c0K(u) ≤ lim inf
ε→0

(B(uε) + c0K(uε)) ,

which implies
B(u) ≤ lim inf

ε→0
B(uε).

Thus the first two claims follow. We calculate the first variation of

v 7→ B(v)

K(v)

at the minimum u:

0 =
d

dt

B(u+ tv)

K(u+ tv) |t=0

=
2B(u, v)

K(u)
− 2B(u)K(u, v)

K(u)2

and hence, for all v ∈ V ,

B(u, v) =
B(u)

K(u)
K(u, v) = λK(u, v).

8Every bounded sequence in H has a subsequence which converges in the norm induced
by K.
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3.1.21 Theorem. Let (H, g) be an infinite dimensional real Hilbert space, K
a symmetric, continuous and compact bilinear form on H, such that

∀u 6= 0: K(u) := K(u, u) > 0

and B a symmetric, continuous bilinear form on H, which is coercive relative
K, i.e.

∃c0, c > 0 ∀u ∈ H : B(u) := B(u, u) ≥ c‖u‖2g − c0K(u).

Then the eigenvalue problem

∃0 6= ui ∈ H ∀v ∈ H : B(ui, v) = λiK(ui, v)

has countably many solutions λi of finite multiplicity. If we write

λ1 ≤ λ2 ≤ ...,

we obtain
lim
i→∞

λi =∞.

The eigenvectors (ui) are complete in H.9 They satisfy the orthogonality rela-
tions

K(ui, uj) = δij

and
B(ui, uj) = λiK(ui, uj),

as well as the expansions

B(u, v) =
∑
i

λiK(ui, u)K(ui, v)

and
K(u, v) =

∑
i

K(ui, u)K(ui, v).

The pairs (λi, ui) are defined by the variational problem

λi = B(ui, ui) = inf

{
B(u)

K(u)
: 0 6= u ∈ H,K(u, uj) = 0 ∀1 ≤ j ≤ i− 1

}
.

Proof. Step 1: Solve the variational problem

B(u)

K(u)
→ min, 0 6= u ∈ H.

By the previous theorem there exists a solution u1 and there holds

∀v ∈ H : B(u1, v) = λ1K(u1, v), K(u1) = 1,

such that λ1 is the infimum.
Step 2: Let i > 1 and let there be solutions for 1 ≤ j ≤ i− 1. Set

Vi = span(u1, ..., ui−1)

9span(ui) is dense in H.
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and let V ⊥i be the orthogonal complement of V relative K. Again, by the
previous theorem

∃ui ∈ V ⊥i : B(ui) = λi = inf

{
B(u)

K(u)
: u ∈ V ⊥i

}
and

∀v ∈ V ⊥ : B(ui, v) = λiK(ui, v).

For 1 ≤ j ≤ i− 1 we have

B(uj , ui) = λjK(uj , ui) = 0.

Thus
∀v ∈ H : B(ui, v) = λiK(ui, v),

since
H = Vi ⊕K V ⊥i .

The ui satisfy the orthogonality relation

B(ui, uj) = λiK(ui, uj) = λiδij .

Step 3: Suppose now the eigenvalues were bounded. We have

B(ui) = λi, K(ui) = 1,

and thus
c0K(ui) +B(ui) = λi + c0,

so that the ui are bounded. Hence

2 = K(ui − ui+1)→ 0

for a subsequence, which is a contradiction. By the same reasoning the multi-
plicity must be finite.
Step 4: We prove the completeness. Let u ∈ H. Define

ũm =

m∑
i=1

K(u, ui)ui ≡
m∑
i=1

ciui

and
vm = u− ũm ∈ V ⊥m+1.

Thus
λm+1K(vm) ≤ B(vm)

and

K(vm) = K(u)−
m∑
i=1

c2i , B(vm) = B(u)−
m∑
i=1

λic
2
i

imply
B(vm) ≤ c

and thus
K(vm)→ 0.
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Furthermore there holds
∞∑
i=1

λic
2
i <∞.

Let m < n.

B(vn − vm) =

n∑
i=m+1

λic
2
i → 0.

Thus the (vn) form a Cauchy sequence in H and by K(vm)→ 0 we find

vm → 0.

This implies that the (ui) are complete and

B(u) =

∞∑
i=1

λic
2
i .

3.2 Distributions
The theory of distributions ensures the possibility to define derivatives of very
general objects, which will suffice for all our purposes. We will restrict to the
very basics here.

3.2.1 Definition (Test functions). Let n ∈ N and Ω ⊂ Rn open.

(i) The elements of C∞c (Ω) are called test functions.

(ii) We define a sequence (ϕk)k∈N in C∞c (Ω) to converge to ϕ ∈ C∞c (Ω), if

(a) ∃k0 ∈ N ∃Ω′ b Ω ∀k ≥ k0 : suppϕk ⊂ Ω′ and

(b) |ϕk − ϕ|m,Ω′ → 0 ∀m ∈ N.

(iii) The vector space C∞c (Ω) equipped with this notion of convergence is de-
noted by D(Ω).

3.2.2 Definition (Distributions). Let n ∈ N and Ω ⊂ Rn open.

(i) A distribution on Ω is a continuous linear map

Θ: D(Ω)→ R.

We write D′(Ω) for the set of distributions on Ω.

(ii) A sequence (Θk)k∈N of distributions is said to converge to a distribution
Θ, if it converges pointwise,

∀ϕ ∈ D(Ω): Θk(ϕ)→ Θ(ϕ).

3.2.3 Example. (i) Let f ∈ L1
loc(Ω), then

Θf (ϕ) =

ˆ
Ω

fϕ
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defines a distribution and the assignment

f 7→ Θf

is injective, as you can check as an easy exercise.

(ii) For x ∈ Ω the map
δx : D(Ω)→ R

ϕ 7→ ϕ(x)

is a distribution, the so-called Dirac-delta distribution.

(iii) Let η ∈ C∞c (Rn) be a mollifier, then the family

ηε(x) = ε−nη
(x
ε

)
is also called the Dirac sequence of η. The reason for this is apparent from
the property that for all ϕ ∈ C∞c (Rn) there holds

Θηε(x−·)(ϕ) =

ˆ
Rn
ηε(x− y)ϕ(y) dy → ϕ(x) = δx(ϕ).

Hence
Θηε(x−·) → δx, ε→ 0.

Now we define the derivative of a distribution. This definition is motivated
from the rule of partial integration.

3.2.4 Definition (Distributional derivative). Let n ∈ N, Ω ⊂ Rn open, Θ ∈
D′(Ω) and α ∈ Nn0 .

(i) We define the α-th distributional derivative of Θ, Θ,α ∈ D′(Ω), by

Θ,α(ϕ) := (−1)〈α〉Θ(ϕ,α). (3.5)

(ii) In case that Θ arises from a function f ∈ L1
loc(Ω) as in Example 3.2.3, we

write
f,α := (Θf ),α

and call f,α the α-th weak derivative of f .

3.2.5 Remark. This definition is cooked up, such that it really is a gener-
alization of ordinary differentiation and at the same time a certain rule of
partial integration holds, namely (3.5). It generalizes differentiation, since for
f ∈ C〈α〉(Ω) ⊂ L1

loc(Ω) there holds

(Θf ),α(ϕ) = (−1)〈α〉
ˆ

Ω

fϕ,α = 10
ˆ

Ω

f,αϕ = Θf,α(ϕ).

In this sense the distributional derivative of f coincides with the classical deriva-
tive.

10Classical partial integration.
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3.2.6 Example (Heavyside function). Let ϑ ∈ L1
loc(R) be given by

ϑ(t) :=

{
1, t > 0

−1, t < 0

Then, as one may verify as an exercise, ϑ′ = 2δ0, where δ0 is the Dirac-delta
distribution in 0 ∈ R.

3.3 Sobolev spaces

Definition and smooth approximation
3.3.1 Definition. Let n,m ∈ N, Ω ⊂ Rn open and 1 ≤ p ≤ ∞.

(i) Define the Sobolev space of class (m, p) by

Wm,p(Ω) := {u ∈ Lp(Ω): u,α ∈ Lp(Ω) ∀ 〈α〉 ≤ m}

and equip it with the norm

‖u‖m,p,Ω =

 ∑
〈α〉≤m

‖u,α‖pp,Ω

 1
p

in case 1 ≤ p <∞ and

‖u‖m,∞,Ω = max
〈α〉≤m

‖u,α‖∞,Ω

in case p =∞. On Wm,2(Ω) we define the scalar product

〈u, v〉m,2,Ω :=
∑
〈α〉≤m

ˆ
Ω

u,αv,α.

(ii) Functions u belonging toW 1,1
loc (Ω) are called weakly differentiable and their

distributional derivatives are called the weak derivatives.

(iii) We define the local Sobolev space of class (m, p) by

Wm,p
loc (Ω) = {u ∈ Lploc(Ω): u ∈Wm,p(Ω′) ∀Ω′ b Ω}.

(iv) We define Wm,p
0 (Ω) to be the closure of C∞c (Ω) with respect to ‖ · ‖m,p,Ω.

This indeed is a generalisation of classical differentiation:

3.3.2 Exercise. Let n ∈ N and Ω ⊂ Rn and 1 ≤ p ≤ ∞. Then

Cm(Ω) ⊂Wm,p
loc (Ω)

and for 〈α〉 ≤ m the α-th weak derivative of a function u ∈ Cm(Ω) can be
represented by11 by the classical α-partial derivative ∂αu.

11i.e. is up to measure zero given by
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3.3.3 Proposition. Let n,m ∈ N, Ω ⊂ Rn open and 1 ≤ p ≤ ∞. Then
Wm,p(Ω) is a Banach space and for p = 2 it is a Hilbert space.

Proof. Let (uk)k∈N be a Cauchy sequence in Wm,p(Ω). In particular it is a
Cauchy sequence in Lp(Ω) and hence has a limit u ∈ Lp(Ω). Furthermore for
all α with 〈α〉 ≤ m the sequence (uk,α) is a Cauchy sequence in Lp(Ω) and
hence converges to some limit g,α ∈ Lp(Ω). There holds for alle test functions
ϕ ∈ C∞c (Ω), that

ˆ
Ω

g,αϕ = lim
k→∞

ˆ
Ω

uk,αϕ = (−1)〈α〉 lim
k→∞

ˆ
Ω

ukϕ,α = (−1)〈α〉
ˆ

Ω

uϕ,α.

Hence we have calculated the α-th distributional derivative of u to be g,α ∈
Lp(Ω) and hence

u ∈Wm,p(Ω)

and uk → u in Wm,p(Ω).
Wm,2(Ω) is a Hilbert space because the inner product 〈·, ·〉m,2,Ω induces the

Sobolev norm.

Also for Sobolev functions we obtain a smoothing result, the proof of which
is an exercise.

3.3.4 Exercise. Let n,m ∈ N, Ω ⊂ Rn open, 1 ≤ p < ∞, η a mollifier
with Dirac sequence (ηε), u ∈Wm,p(Ω) and uε their convolutions. Then for all
Ω′ ⊂ Ω with

Ω̄′ ⊂ Ω, dist(Ω̄′, ∂Ω) > 0

there holds
lim
ε→0
‖uε − u‖m,p,Ω′ = 0.

Basic rules for calculation
Many properties of classically differentiable functions carry over to Sobolev func-
tions due to these approximation properties. We prove some of them now.

3.3.5 Proposition (Product rule). Let n ∈ N, Ω ⊂ Rn open, 1 ≤ p, p′ ≤ ∞
and 1

p + 1
p′ = 1. Let u ∈W 1,p(Ω) and v ∈W 1,p′(Ω). Then

uv ∈W 1,1(Ω)

and
D(uv) = Du · v + u ·Dv.

Proof. By symmetry we may assume p <∞. Let ϕ ∈ C∞c (Ω) with

suppϕ ⊂ Ω′ b Ω

and let ε < dist(Ω′, ∂Ω). Let uε be the convolution of u with a Dirac sequence.
Then there holds ˆ

Ω′
(ϕuε)v,i = −

ˆ
Ω′

(ϕuε,iv + uεϕ,iv).
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Taking the limit ε→ 0 and reverting Ω′ back to Ω we obtain

∀ϕ ∈ C∞c (Ω):

ˆ
Ω

ϕ(uv,i + u,iv) = −
ˆ

Ω

uvϕ,i.

This proves the product rule and from Hölder’s inequality we get

D(uv) ∈ L1(Ω).

3.3.6 Proposition (Chain rule). Let n ∈ N, Ω ⊂ Rn open, 1 ≤ p ≤ ∞ and
g ∈ C1(R) with bounded derivative. Let u ∈ W 1,p(Ω). Then, if g ◦ u ∈ Lp(Ω),
we have g ◦ u ∈W 1,p(Ω) and

D(g ◦ u) = g′(u)Du.

Proof. Let ϕ ∈ C∞c (Ω) and Ω′ b Ω, such that ϕ ∈ C∞c (Ω′). Let uε ∈ C∞(Ω′)
be the convolution with a Dirac sequence ηε, such that

‖u− uε‖1,1,Ω′ → 0

and
(uε, Duε)→ (u,Du) a.e.

Then g ◦ uε → g ◦ u in L1(Ω′), since g is uniformly Lipschitz continuous and
hence

ˆ
Ω′

(g ◦ u)ϕ,i = lim
ε→0

ˆ
Ω′

(g ◦ uε)ϕ,i = lim
ε→0

(
−
ˆ

Ω′
g′(uε)uε,iϕ

)
(3.6)

There holds g′(uε)→ g′(u) a.e. and |g′| ≤ L. Hence

|ϕg′(uε)Du| ≤ L|Du||ϕ|.

Dominated convergence implies
ˆ

Ω′
|g′(uε)uε,iϕ− g′(u)u,iϕ| ≤

ˆ
Ω′
|g′(uε)(uε,i − u,i)ϕ|

+

ˆ
Ω′
|g′(uε)− g′(u)||Du||ϕ| → 0.

(3.6) implies the chain rule. g ◦ u ∈W 1,p(Ω) follows immediately.

3.3.7 Proposition. Let n,m ∈ N, Ω, Ω̃ ⊂ Rn open and 1 ≤ p ≤ ∞. Let
u ∈ Wm,p(Ω) and ψ = (x̃i) ∈ Cm(Ω, Ω̃) be a coordinate transformation, such
that ψ and ψ−1 have a bounded derivatives up to order m. Then the map
ũ = u ◦ ψ−1 belongs to Wm,p(Ω̃) and there holds

ũ,i = (u,k ◦ ψ−1)xk,i, (3.7)

where (xk) denote the component functions of ψ−1, i.e. ψ−1(x̃) = (xk(x̃)).
Furthermore there holds

‖ũ‖m,p,Ω̃ ≤ c‖u‖m,p,Ω.
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Proof. First suppose m = 1. Let ϕ ∈ C∞c (Ω̃) and Ω′ b Ω, such that ϕ ∈
C∞c (ψ(Ω′)) and uε → u in W 1,1(Ω′) an approximation by convolutions with a
Dirac sequence. Define

ũε = uε ◦ ψ−1.

Then
ũε,i = uε,kx

k
,i.

Due to the transformation theorem we have ũε → ũ in L1(ψ(Ω′)) and

ũε,i → u,kx
k
,i

in L1(ψ(Ω′)). Hence
ˆ
ψ(Ω′)

ũϕ,i = lim
ε→0

ˆ
ψ(Ω′)

ũεϕ,i = − lim
ε→0

ˆ
ψ(Ω′)

uε,kx
k
,iϕ = −

ˆ
ψ(Ω′)

u,kx
k
,iϕ.

By the transformation theorem and the boundedness of the Jacobians we
obtain

‖ũ‖1,p,Ω̃ ≤ c‖u‖1,p,Ω
in case p < ∞, while in case p = ∞ this estimate is trivial. For m > 1 we
proceed by induction. Let the result be valid for m ≥ 1, then by (3.7) we obtain
that

ũ,ix̃
i
,k ∈Wm−1,p(Ω)

with the estimate

‖ũ,ix̃i,k‖m−1,p,Ω̃ ≤ c‖u,k‖m−1,p,Ω ≤ c‖u‖m,p,Ω.

Due to
ũ,i = ũ,kx̃

k
,mx

m
,i ,

an inductive use of the product rule and the boundedness of all derivatives of
ψ, we obtain the desired estimate.

3.3.8 Lemma. Let n ∈ N, Ω ⊂ Rn open, 1 ≤ p ≤ ∞ and u ∈W 1,p(Ω). Then

u+ = max(u, 0), u− = min(u, 0)

are in W 1,p(Ω) and there holds

Du+ =

{
Du, u > 0

0, u ≤ 0
,

Du− =

{
Du, u < 0

0, u ≥ 0
.

Proof. Let ε > 0 and set

gε(t) :=

{√
t2 + ε2 − ε, t > 0

0, t ≤ 0.
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Then gε ∈ C1(R) and |g′ε| ≤ 1. Since gε(0) = 0, we have gε ◦ u ∈ Lp(Ω) and
hence the chain rule implies

uε := gε ◦ u ∈W 1,p(Ω)

and

Duε = g′ε(u)Du =

{
uDu√
u2+ε2

, u > 0

0, u ≤ 0.

Let ϕ ∈ C∞c (Ω). Then, due to 0 ≤ uε ≤ u and the dominated convergence
theorem,

ˆ
Ω

u+ϕ,i = lim
ε→0

ˆ
Ω

uεϕ,i = − lim
ε→0

ˆ
Ω

uε,iϕ

= − lim
ε→0

ˆ
{u>0}

uu,i√
u2 + ε2

ϕ

= − lim
ε→0

ˆ
Ω

uu,i√
u2 + ε2

χ{u>0}ϕ

= −
ˆ

Ω

χ{u>0}u,iϕ.

Using u− = −(−u)+ the result for u− follows.

3.3.9 Exercise. Let n ∈ N, Ω ⊂ Rn open, 1 ≤ p ≤ ∞ and u ∈ W 1,p(Ω).
Then for all c ∈ R there holds

Du|{u=c} = 0

almost everywhere.

Theorem of Meyers-Serrin
The main feature of the previous proofs is that we have always approximated
Sobolev functions locally by smooth functions. Historically, an important step
in the theory of Sobolev spaces was that actually

C∞(Ω) ∩Wm,p(Ω) ⊂Wm,p(Ω)

is dense.12

3.3.10 Theorem (Meyers-Serrin). Let n,m ∈ N, Ω ⊂ Rn open and 1 ≤ p <
∞. Then for all u ∈ Wm,p(Ω) there exists a sequence (uk)k∈N in C∞(Ω) ∩
Wm,p(Ω), such that

‖uk − u‖m,p,Ω → 0.

12Before the 1960’s it was also common to define Sobolev spaces as the completion of

{u ∈ C∞(Ω): ‖u‖m,p,Ω <∞}

under the ‖ · ‖m,p,Ω norm. Those spaces were then called Hm,p(Ω). Since obviously there
holds Hm,p(Ω) ⊂ Wm,p(Ω), this theorem shows that Hm,p(Ω) = Wm,p(Ω). This result is
due to Meyers and Serrin and appeared in the beautiful paper H = W , cf. [12].
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Proof. Let (Ωj)j∈N be an exhaustion of Ω, i.e.

Ωj b Ωj+1, Ω =
⋃
j∈N

Ωj .

Let Uj = Ωj+1\Ω̄j−1, where Ω0 = Ω−1 := ∅. Let (ϕi) be a countable partition
of unity for Ω according to Theorem 1.3.8. Let u ∈ Wm,p(Ω) and ε > 0, then
for each i there exists ji such that

supp(ϕiu) ⊂ Uji .

Let
hi < min(dist(Uji , ∂Ω),dist(supp(ϕiu), ∂Uji)),

such that for the hi-convolution of ϕiu we get

‖(ϕiu)hi − ϕiu‖m,p,Ω = ‖(ϕiu)hi − ϕiu‖m,p,Uji <
ε

2i
.

Defining
v(x) =

∑
i∈N

(ϕiu)hi(x),

which is a fixed finite sum as long as x ranges in any given Ω′ b Ω, we see that
v ∈ C∞(Ω) ∩Wm,p(Ω). Furthermore

‖v − u‖m,p,Ω ≤
∑
i∈N
‖(ϕiu)hi − ϕiu‖m,p,Ω < ε.

Hence C∞(Ω) ∩Wm,p(Ω) is dense and the proof complete.

Difference quotients
Soon we will see, that the space in which we search a solution of

∆u = f

is W 1,2(Ω), for example when f ∈ L2(Ω). Of course it is then natural to ask,
whether the solution is actually W 2,2(Ω), since this would be expected from
counting the orders of derivatives. Since there is no way to directly estimate
the second weak derivative of u in L2(Ω), simply because it is not known yet to
exist, we will instead look at difference quotients. The crucial results concerning
difference quotients will be deduced in the sequel.

3.3.11 Definition (Difference quotients). Let n ∈ N, Ω ⊂ Rn open and u ∈
RΩ. Let Ω′ b Ω and 0 < |h| < dist(Ω′, ∂Ω), then for 1 ≤ i ≤ n we define the
difference quotient of u with stepsize h in direction ei, ∆i

hu ∈ RΩ′ , by

∆i
hu(x) =

u(x+ hei)− u(x)

h
.

3.3.12 Lemma. Let n ∈ N, Ω ⊂ Rn open and 1 ≤ p ≤ ∞. For Ω′ b Ω,
0 < |h| < dist(Ω′, ∂Ω) and 1 ≤ i ≤ n,

∆i
h : Lp(Ω)→ Lp(Ω′)
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is a continuous linear operator and

‖∆i
hu‖p,Ω′ ≤

2

|h|
‖u‖p,Ω.

For u, v ∈ L2(Ω) there also holds

〈∆i
hu, v〉2,Ω = −〈u,∆i

−hv〉2,Ω
if v has compact support in Ω′.13

Proof. The first statement is obvious. In case p = 2, w.l.o.g. let supp(v) ⊂ Ω′.
Then

〈∆i
hu, v〉2,Ω =

ˆ
Ω′

u(x+ hei)− u(x)

h
v(x) dx

=
1

h

ˆ
Ω′
u(x+ hei)v(x) dx− 1

h

ˆ
Ω′
u(x)v(x) dx

=
1

h

ˆ
Ω′+hei

u(y)v(y − hei) dy −
1

h

ˆ
Ω′
u(y)v(y) dy

= −
ˆ

Ω

u(y)
v(y − hei)− v(y)

(−h)
dy,

where in the last step we have used that supp(v) ⊂ Ω′.

The following lemmata are the crucial results for difference quotients in the
context of Sobolev spaces.

3.3.13 Lemma. Let n ∈ N, Ω ⊂ Rn open, 1 ≤ p <∞, u ∈W 1,p(Ω), Ω′ b Ω,
0 < |h| < dist(Ω′, ∂Ω) and 1 ≤ i ≤ n. Then

‖∆i
hu‖p,Ω′ ≤ ‖u,i‖p,Ω

and
lim
h→0
‖u,i −∆i

hu‖p,Ω′ = 0.

Proof. Without loss of generality assume i = n. We use the notation

x̂ = (x1, . . . , xn−1).

First suppose u ∈ C1(Ω) ∩W 1,p(Ω). Let x ∈ Ω′.

∆n
hu(x) =

1

h

ˆ xn+h

xn

u,n(x̂, t) dt

and thus using Hölder’s inequality,

|∆n
hu(x)|p ≤ |h|−p

∣∣∣∣∣
ˆ xn+h

xn

u,n(x̂, t) dt

∣∣∣∣∣
p

≤ |h|−p|h|p−1

ˆ xn+h

xn

|u,n(x̂, t)|p dt

= |h|−1

ˆ xn+h

xn

|u,n(x̂, t)|p dt.

13In this equality u and v are extended to Rn by zero.
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Thus we haveˆ
Ω′
|∆n

hu(x)|pdx ≤ |h|−1

ˆ h

0

ˆ
Ω′
|u,n(x̂, xn + t)|p dxdt ≤ ‖u,n‖pp,Ω.

By Lemma 3.3.12 both sides are continuous with respect toW 1,p(Ω) convergence
and hence the result holds for general u ∈W 1,p(Ω).

For the second claim let ε > 0. Choose v ∈ C1(Ω) ∩W 1,p(Ω) such that

‖v − u‖1,p,Ω <
ε

2
.

Then

‖u,n −∆n
hu‖p,Ω′ ≤ ‖u,n − v,n‖p,Ω′ + ‖v,n −∆n

hv‖p,Ω′ + ‖∆n
h(u− v)‖p,Ω′

and hence
lim sup
h→0

‖u,n −∆n
hu‖p,Ω′ ≤ ε+ lim sup

h→0
‖v,n −∆n

hv‖p,Ω′ = ε,

since for C1-functions the difference quotients convergence locally uniformly to
the derivative, due to the estimate of the remainder in Taylor’s formula.

The next lemma is valid for u ∈ Lp(Ω) with 1 < p < ∞, but we only prove
it for p = 2 in order to keep the required knowledge from functional analysis at
a minimum.

3.3.14 Lemma. Let n ∈ N, Ω ⊂ Rn open, u ∈ L2(Ω), Ω′ b Ω, 0 < h0 <
dist(Ω′, ∂Ω) and 1 ≤ i ≤ n. Suppose

∀0 < |h| < h0 : ‖∆i
hu‖2,Ω′ ≤ c.

Then the weak derivative u,i exists and

‖u,i‖2,Ω′ ≤ c.

Proof. L2(Ω′) is a Hilbert space. Thus there exists a sequence hk such that

∆i
hk
u ⇀ v ∈ L2(Ω′)

and
‖v‖2,Ω′ ≤ lim inf

k→∞
‖∆i

hk
u‖2,Ω′ ≤ c.

Let ϕ ∈ C∞c (Ω′) and pick Ω′′ b Ω′, auch that ϕ ∈ C∞c (Ω′′). Then

〈v, ϕ〉2,Ω′ = lim
k→∞

〈∆i
hk
u, ϕ〉2,Ω′′ = − lim

k→∞
〈u,∆i

−hkϕ〉2,Ω′ = −〈u, ϕ,i〉 .

Thus v = u,i.

3.4 Embedding and compactness theorems
In order to show that a sufficiently regular weak solution is actually differen-
tiable, we need so-called embedding theorems for Sobolev spaces. Among other
statements they imply that

Wm,p
0 (Ω) ⊂ Ck(Ω̄),

where k = k(m, p) and m is large enough. This will in turn yield classical
solutions to our PDE.
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3.4.1 Theorem. Let n ∈ N, Ω ⊂ Rn open and 1 ≤ p <∞. Then:

(i) If 1 ≤ p < n, there holds

W 1,p
0 (Ω) ↪→ Lp

∗
(Ω)14

with 1
p∗ = 1

p −
1
n and there holds

‖u‖p∗,Ω ≤ c‖Du‖p,Ω ∀u ∈W 1,p
0 (Ω),

where c = c(n, p).

(ii) If Ω b Rn and p > n, there holds

W 1,p
0 (Ω) ↪→ C0,α(Ω̄)15

with α = 1− n
p and there holds

|u|0,α,Ω ≤ c‖Du‖p,Ω ∀u ∈W 1,p
0 (Ω),

where c = c(n, p,diam(Ω)).

Proof. (i) We show

∃c = c(n, p) ∀u ∈W 1,p
0 (Ω): ‖u‖p∗,Ω ≤ c‖Du‖p,Ω.

It suffices to show this for u ∈ C1
c (Rn). Let first p = 1 and x = (x̂i, x

i) for all i.
There hold

|u(x)| ≤
ˆ xi

−∞
|u,i(x̂i, t)|dt,

|u(x)|
n
n−1 ≤

n∏
i=1

(ˆ
R
|u,i(x̂i, t)|dt

) 1
n−1

and hence
ˆ
R
|u(x)|

n
n−1 dx1 ≤

(ˆ
R
|u,1(x̂1, t)|dt

) 1
n−1

ˆ
R

n∏
i=2

(ˆ
R
|u,i(x̂i, t)|dt

) 1
n−1

dx1.

The generalized Hölder inequality implies
ˆ
R
|u(x)|

n
n−1 dx1 ≤

(ˆ
R
|u,1(x̂1, t)|dt

) 1
n−1

n∏
i=2

(ˆ
R2

|u,i(x̂i, xi)|dxidx1

) 1
n−1

.

For n = 2 this already implies
ˆ
R2

|u|
n
n−1 ≤

ˆ
R2

|u,1|
ˆ
R2

|u,2|.

14For linear subspaces V,W of a vector space E, equipped with different norms, the symbol

V ↪→W

means that V ⊂W and the inclusion map is continuous.
15For elements u ∈W 1,p

0 (Ω) it has to be understood to mean that one function representing
u is in C0,α(Ω̄) and satisfies the estimate.
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For n > 2 we repeat this argument to obtain
ˆ
R2

|u|
n
n−1 dx1dx2 ≤

(ˆ
R2

|u,2(x̂2, x
2)|dx2dx1

) 1
n−1

(ˆ
R2

|u,1(x̂1, x
1)|dx1dx2

) 1
n−1

·
n∏
i=3

(ˆ
R3

|u,i(x̂i, xi)|dxidx1dx2

) 1
n−1

.

Successive integration implies
ˆ
Rn
|u|

n
n−1 ≤

n∏
i=1

(ˆ
Rn
|u,i|

) 1
n−1

≤
(ˆ

Rn
|Du|

) n
n−1

and hence
∀u ∈ C1

c (Rn) : ‖u‖ n
n−1 ,Rn ≤ ‖Du‖1,Rn .

Now let 1 < p < n : Define

t :=
p(n− 1)

n− p
> 1.

Then
v := |u|t ∈ C1

c (Rn)

and applying what we have just proven, we get
ˆ
Rn
|v|

n
n−1 ≤

(ˆ
Rn
|Dv|

) n
n−1

.

We calculate
|Dv| ≤ t|u|

n(p−1)
n−p |Du|

and deduce

‖v‖ n
n−1 ,Rn ≤ t

ˆ
Rn
|u|

n(p−1)
n−p |Du| ≤ t‖Du‖p

(ˆ
Rn
|u|

np
n−p

) p−1
p

.

Inserting |u|t gives
‖u‖p∗,Rn ≤ t‖Du‖p,Rn .

(ii) We will show

∀u ∈W 1,p
0 (Ω): |u|0,α,Ω ≤ c‖Du‖p,Ω.

Let x1, x2 ∈ Ω, 0 < ρ = |x1 − x2| and x ∈ Bρ(
x1+x2

2 ) ≡ Bρ. Then for u ∈
C1
c (Ω):16

u(x)− u(xi) =

ˆ 1

0

d

dt
u(xi + t(x− xi)) dt

≡
ˆ 1

0

u,k(xi + t(x− xi))(xk − xki ) dt

≤ 2ρ

ˆ 1

0

|Du(xi + t(x− xi))| dt.

16extended to Rn by zero
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Thus, with possibly varying constants c = c(n),∣∣∣∣∣
 
Bρ

u− u(xi)

∣∣∣∣∣ ≤ cρ1−n
ˆ 1

0

ˆ
Bρ

|Du(xi + t(x− xi))| dxdt

= cρ1−n
ˆ 1

0

t−n
ˆ
Bρt

|Du(z)| dzdt

≤ cρ1−n
ˆ 1

0

t−nρn
p−1
p tn

p−1
p dt‖Du‖p,Rn

= cρ1−np ‖Du‖p,Ω
ˆ 1

0

t−
n
p dt

= c(n, p)ρ1−np ‖Du‖p,Ω.

Finally

|u(x1)− u(x2)| ≤

∣∣∣∣∣u(x1)−
 
Bρ

u

∣∣∣∣∣+

∣∣∣∣∣
 
Bρ

u− u(x2)

∣∣∣∣∣
≤ c‖Du‖p,Ω|x1 − x2|α

with α = 1− n
p .

Choosing x2 ∈ ∂Ω we find u(x2) = 0 and thus

|u|0,Ω ≤ c‖Du‖p,Ω(diam Ω)α.

For u ∈W 1,p
0 (Ω) choose an approximating sequence (un)n∈N in C1

c (Ω), then by
the previous estimate (un)n∈N is a Cauchy-sequence in C0,α(Ω̄) and has a limit
v ∈ C0,α(Ω̄). Since for almost every x and a subsequence there holds

un(x)→ u(x),

v is a Hölder-continuous representative of u and satisfies the estimate.

If we relax the target space of these embeddings a little bit, we even obtain
compact embeddings.

3.4.2 Lemma (Interpolation). Let n ∈ N and Ω ⊂ Rn open.

(i) If 1 ≤ p1 < p < p2 <∞ and

1

p
=

α

p1
+

1− α
p2

, 0 < α < 1,

then
‖u‖p,Ω ≤ ‖u‖αp1,Ω‖u‖

1−α
p2,Ω

∀u ∈ Lp1(Ω) ∩ Lp2(Ω).

(ii) If 0 < β < α ≤ 1, then

[u]β,Ω ≤ 21− βα [u]
β
α

α,Ω|u|
1− βα
0,Ω ∀u ∈ C0,α(Ω̄).
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Proof. (i) There holds

p =
1

αp2 + (1− α)p1
(αp1p2 + (1− α)p1p2).

Thus ˆ
Ω

|u|p =

ˆ
Ω

|u|p1
αp2

αp2+(1−α)p1 |u|p2
(1−α)p1

αp2+(1−α)p1

≤
(ˆ

Ω

|u|p1

) αp2
αp2+(1−α)p1

(ˆ
Ω

|u|p2

) (1−α)p1
αp2+(1−α)p1

.

(ii)

|u(x)− u(y)|
|x− y|β

=

(
|u(x)− u(y)|

α
β

|x− y|α

) β
α

=

(
|u(x)− u(y)|
|x− y|α

|u(x)− u(y)|
α
β−1

) β
α

≤ 21− βα [u]
β
α

α,Ω|u|
1− βα
0,Ω .

3.4.3 Theorem. Let n ∈ N, Ω b Rn open and 1 ≤ p <∞.

(i) If 1 ≤ p < n, then the embedding

W 1,p
0 (Ω) ↪→ Lq(Ω)

with 1
q >

1
p −

1
n is compact.

(ii) If p > n, then
W 1,p

0 (Ω) ↪→ C0,β(Ω̄)

with β < 1− n
p is compact.

Proof. Due to Corollary 3.1.18, Theorem 3.4.1 and Lemma 3.4.2 the second
claim is true. To prove (i), suppose that (uk)k∈N is a bounded sequence in
W 1,p

0 (Ω). Choose a sequence (vk)k∈N in C∞c (Ω), such that

‖uk − vk‖1,p,Ω <
1

k
.

It suffices to prove that (vk)k∈N has a convergent subsequence in Lq(Ω) and
by Lemma 3.4.2 it suffices to show this for q = 1. We use the Kolmogorov
characterisation, Theorem 3.1.19. The boundedness already holds in Lp

∗
(Ω)

and thus also in L1(Ω). We prove the continuity in the mean.

vk(x+ h)− vk(x) =

ˆ 1

0

d

dt
vk(x+ th)dt

=

ˆ 1

0

vk,i(x+ th)hidt

and thus

lim sup
h→0

ˆ
Rn
|vk(x+ h)− vk(x)| dx ≤ lim sup

h→0
|h|

ˆ 1

0

ˆ
Rn
|Dvk| = 0.
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Compactness theorems of higher order follow and shall be proved as an
exercise.

3.4.4 Exercise. Let n,m ∈ N, Ω b Rn open and 1 ≤ p < ∞. Then there
hold

(i) If mp < n and q < np
n−mp , then

Wm,p
0 (Ω) ↪→ Lq(Ω)

is compact.

(ii) If 0 ≤ k < m− n
p , then

Wm,p
0 (Ω) ↪→ Ck(Ω̄)

is compact.

Due to its importance, also historically, let us write down a corollary of the
previous compactness theorem, which is known as Rellich’s embedding theorem.

3.4.5 Theorem (Rellich). Let n,m ∈ N, Ω b Rn open and 1 ≤ p <∞. Then

Wm,p
0 (Ω) ↪→Wm−1,p

0 (Ω)

is compact.

Proof. Induction, m = 1. If p ≤ n, then

W 1,p
0 (Ω) ↪→W 1,p−ε

0 (Ω) ↪→ L
n(p−ε)
n−(p−ε)−ε(Ω)

is compact for small ε and there holds

p <
n(p− ε)
n− (p− ε)

− ε.

If p > n, then
W 1,p

0 (Ω) ↪→ C0,1−np−ε(Ω̄) ↪→ Lp(Ω)

is compact for small ε. Suppose the result is true for m ≥ 1, then

D(Wm+1,p
0 (Ω)) ↪→Wm,p

0 (Ω) ↪→Wm−1,p
0 (Ω)

is compact. So let (uk)k∈N be bounded in Wm+1,p
0 (Ω). Then (uk)k∈N and

(Duk)k∈N are bounded in Wm,p
0 (Ω) and hence a subsequence is a Cauchy se-

quence in Wm−1,p(Ω)

‖uk − ul‖m−1,p,Ω → 0, ‖Duk −Dul‖m−1,p,Ω → 0.

Then
‖uk − ul‖pm,p,Ω =

∑
〈α〉≤m

‖(uk − ul),α‖pp,Ω → 0.
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3.5 Extension of Sobolev functions
Since in the end we want to solve the Dirichlet problem, we have to discuss
boundary values of Sobolev functions. We prepare this with several results,
amongst which there is a generalisation of the embedding theorems.

3.5.1 Lemma. Let n ∈ N, Ω b Rn open with Cm-boundary or Ω = Rn+ and
1 ≤ p <∞. Then C∞(Ω̄) is dense in Wm,p(Ω).

Proof. Cover ∂Ω by finitely many open sets (Ui)1≤i≤N , which lie in the domains
of local straightening functions (ψi)1≤i≤N with image Rn+ and define

U0 = Ω\
N⋃
k=1

Ūk.

Choose a finite partition of unity (ηj)1≤j≤m for

(Ui)0≤i≤N ,

where
supp ηj ⊂ U0, 1 ≤ j ≤ l

and
supp ηj ⊂ Ui, l + 1 ≤ j ≤ m

for suitable i. It suffices to prove that

w := wj = uηj ◦ ψ−1
i

can be approximated by functions (f jk)k∈N in C∞(R̄n+), since in this case we first
pick a sequence (gk)k∈N in C∞c (Ω) with

gk →
l∑

j=1

ηju ∈Wm,p
0 (Ω)

and then we calculate with the help of Proposition 3.3.7:

‖u− gk +

m∑
j=l+1

ηjf
j
k ◦ ψi‖m,p,Ω

≤ ‖
l∑

j=1

ηju− gk‖m,p,Ω + ‖
m∑

j=l+1

(ηju− ηjf jk ◦ ψ
i)‖m,p,Ω

→ 0

for k → ∞. So let us prove that w ∈ Wm,p(Rn+) can be approximated by a
sequence (fk)k∈N in C∞(R̄n+). Define for h > 0,

wh(x) = w(x+ 2hen),

then wh ∈Wm,p({xn > −2h}). For small ε the convolutions

wεh ∈ C∞
(
{xn > −h}

)
approximate wh in Wm,p({xn > −h}). Furthermore wh → w in Wm,p(Rn+),
since Lp-functions are equicontinuous in the mean.
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3.5.2 Lemma (Lions-Magenes). Let c1, ..., cm+1 be solutions to the linear sys-
tem

m+1∑
k=1

(−1)jkjck = 1, 0 ≤ j ≤ m.

For u ∈Wm,p(Rn+) ∩ C∞(R̄n+),

ũ(x̂, xn) =

m+1∑
k=1

cku(x̂,−kxn), xn < 0,

defines an extension of u to Rn, such that ũ ∈ Cm(Rn) and

‖ũ‖m,p,Rn ≤ c‖u‖m,p,Rn+ , c = c(m,n, p), 1 ≤ p ≤ ∞.

Proof. Let x ∈ Rn−. Then there holds

Dũ(x̂, xn) =

(
m+1∑
k=1

ck
∂u

∂x1
u(x̂,−kxn), ...,

m+1∑
k=1

(−k)ck
∂u

∂xn
(x̂,−kxn)

)
.

Hence
ũ ∈ C1(R̄n−)

and
lim

xn→0+
Dũ(x̂, xn) = lim

xn→0−
Dũ(x̂, xn).

This implies ũ ∈ C1(Rn). In exactly the same way one can iterate this process
up to m derivatives to show that ũ ∈ Cm(Rn). To prove the estimate, calculate
for an arbitrary multi-index |β| ≤ m:

‖ũ,β‖pm,p,Rn = ‖uβ‖pm,p,Rn+ +

ˆ
Rn−

∣∣∣∣∣∣
(
m+1∑
k=1

cku(x̂,−kxn)

)
,β

∣∣∣∣∣∣
p

dx

≤ ‖u,β‖pm,p,Rn+ +

m+1∑
k=1

ckk
mp

ˆ
Rn−
|u,β(x̂,−kxn)|pdx

≤ c(m,n, p)‖u‖m,p,Rn+ .

Using a partition of unity, we can prove an extension theorem for Sobolev
functions.

3.5.3 Theorem (Extension of Sobolev functions). Let n,m ∈ N, Ω b Rn
open with Cm-boundary and 1 ≤ p <∞. Then for any open set Ω0 with Ω b Ω0

there exists a bounded linear extension operator

E : Wm,p(Ω)→Wm,p
0 (Ω0),

such that
Eu|Ω = u

and
‖Eu‖m,p,Ω0 ≤ c‖u‖m,p,Ω,

where c = c(n,m, p, ∂Ω,dist(Ω, ∂Ω0)).
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Proof. We may assume u ∈ C∞(Ω̄). Cover ∂Ω by finitely many open sets
(Ui)1≤i≤N with Ui b Ω0, which lie in the domains of local straightening func-
tions (ψi)1≤i≤N with image Rn+ and choose a finite partition of unity (ηj)1≤j≤m
for (

Ui,Ω\
N⋃
k=1

Ūk

)
1≤i≤N

.

Then for each j, supp(uηj) ⊂ Ui for some i. Hence, defining

E(uηj ◦ ψ−1
i ) ∈Wm,p(Rn)17

to be the Lions-Magenes extension of uηj ◦ ψ−1
i , we deduce

‖E(uηj ◦ ψ−1
i )‖m,p,Rn ≤ c‖uηj ◦ ψ−1

i ‖m,p,Rn+ .

Let 1 ≤ j ≤ k be those indices with

supp ηj ⊂ Ω\
N⋃
r=1

Ūr.

Define

Eu =

k∑
j=1

ηju+

m∑
j=k+1

E(uηj ◦ ψ−1
i ) ◦ ψi.

Then Eu ∈Wm,p
0 (Ω0), Eu|Ω = u and

‖Eu‖m,p,Ω0 ≤ c‖u‖m,p,Ω.

3.5.4 Corollary. Let n,m ∈ N, Ω b Rn open with Cm-boundary and 1 ≤ p <
∞. Then there hold

(i) If mp < n and q < np
n−mp , then

Wm,p(Ω) ↪→ Lq(Ω)

is compact.

(ii) If 0 ≤ k < m− n
p , then

Wm,p(Ω) ↪→ Ck(Ω̄)

is compact.

Proof.
Wm,p(Ω)

E−→Wm,p
0 (Ω0) ↪→ Lq(Ω0)

·|Ω−→ Lq(Ω)

is compact, and similarly for the embedding into Ck.

17Note that E can be continuously extended to Wm,p(Rn+).
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Chapter 4

Elliptic existence and
regularity theory for

weak solutions

4.1 Weak solutions to linear equations
Following our previous philosophy that we should search for a solution of, e.g.

∆u = f (4.1)

in a larger function space, this equation must of course be understood in a weak
sense. The broadest sense that we have considered so far is distributional i.e.
we should consider (4.1) to be defined by

∀ϕ ∈ C∞c (Ω):

ˆ
Ω

u∆ϕ =

ˆ
Ω

fϕ,

where f ∈ L1
loc(Ω). In principle we could try to find a solution u ∈ L1

loc(Ω) to
this equation. However, we already announced, that we want to use the elegant
Hilbert space method. Since L1

loc(Ω) is not a Hilbert space, we must modify the
setting a bit and hence we will allow u ∈W 1,2

0 (Ω).
This modification also includes a new kind of differential operator. In the

linear theory we have so far considered elliptic operators of the form

Lu = aiju,ij + biu,i + du.

Since now we only allow u ∈W 1,2
0 (Ω), the only way to make sense of this is the

distributional one, i.e. it has to be understood as
ˆ

Ω

ϕLu = −
ˆ

Ω

(aijϕ),ju,i +

ˆ
Ω

biu,iϕ+

ˆ
Ω

duϕ.

Since this form would require some regularity of aij , which we do not want to
assume in general, it is more convenient to work with the following structure.

4.1.1 Definition (Divergence form operator). Let n ∈ N and Ω ⊂ Rn open.
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(i) Let
Γ ⊂ Rn × R× Ω.

A divergence form partial differential operator of second order in Ω is a
map

LA,B : A ⊂W 1,2(Ω)→ D′(Ω)

u 7→ (Ai(Du, u, ·)),i +B(Du, u, ·),
where for 1 ≤ i ≤ n,

Ai, B : Γ→ R

and
A = {u ∈W 1,2(Ω): (Du(x), u(x), x) ∈ Γ for a.e. x ∈ Ω,

Ai(Du, u, ·), B(Du, u, ·) ∈ L1
loc(Ω)}1

is the set of (A,B)-admissable functions.

(ii) LA,B is called elliptic in u ∈ A, if

(
Aij(Du(x), u(x), x)

)
:=

(
∂Ai

∂pj
(Du(x), u(x), x)

)
sym

exists and is positive definite for almost every x ∈ Ω. For a set S ⊂ A,
LA,B is called elliptic operator in S, if LA,B is elliptic in all u ∈ S.

(iii) Let S ⊂ A. LA,B is called strictly elliptic in S, if

∃λ > 0 ∀u ∈ S ∀(ξi) ∈ Rn : Aij(Du, u, ·)ξiξj ≥ λ|ξ|2

and uniformly elliptic in S, if

∃0 < λ < Λ ∀u ∈ S ∀(ξi) ∈ Rn : λ|ξ|2 ≤ Aij(Du, u, ·)ξiξj ≤ Λ|ξ|2.

4.1.2 Example. (i) With

A(Du) =
∇u√

1 + |∇u|2
,

we see that the minimal surface operator is in divergence form.

(ii) A general linear divergence form operator has the form

Lu = (aiju,j + aiu),i + biu,i + du

with coefficients aij , ai, bi, d ∈ L2
loc(Ω), 1 ≤ i, j ≤ n. However, we will later

assume coefficients in L∞(Ω) in order to ensure that L maps into the dual
space of W 1,2

0 (Ω).

We can now prove an existence and uniqueness result. For the uniqueness
we have already seen that we have to impose boundary conditions in general.
This is incorporated in the weak setting by restricting the domain to W 1,2

0 (Ω).
We follow [5, Ch. 8].

1Recall how an L1
loc(Ω)-function acts as a distribution.
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4.1.3 Lemma (Maximum principle for weak solutions). Let n ∈ N, Ω b Rn
open and

L : W 1,2
0 (Ω)→ D′(Ω)

Lu = (aiju,j + aiu),i + biu,i + du

with coefficients in L∞(Ω),
ˆ

Ω

(dϕ− aiϕ,i) ≤ 0 ∀0 ≤ ϕ ∈ C∞c (Ω)

and
∀(ξi) ∈ Rn : aijξiξj ≥ λ|ξ|2

with λ > 0. Then L is injective.

Proof. Step 1: We show that for u ∈W 1,2
0 (Ω) and any k > 0 there holds

vk := max(u− k, 0) ∈W 1,2
0 (Ω).

Therefore choose a (ϕm)m∈N of functions in C∞c (Ω) which approximate u in
W 1,2(Ω) and pointwise almost everywhere. Due to Lemma 3.3.8 the functions

ψm = max(ϕm − k, 0)

are in W 1,2(Ω) and have compact support in Ω. Furthermore they approximate
vk:

‖ψm − vk‖22,Ω ≤
ˆ

Ω

|u− ϕm|2 → 0

and ˆ
Ω

|D (max(u− k, 0)−max(ϕm − k, 0)) |2

=

ˆ
Ω

|Duχ{u>k} −Dϕmχ{ϕm>k}|
2

=

ˆ
Ω

|(Du−Dϕm)χ{ϕm>k} +Du(χ{u>k} − χ{ϕm>k})|
2

→ 0

due to the dominated convergence theorem.
Step 2: We prove that L is injective, so let Lu = 0. Then for all k > 0

0 = Lu(vk) = −
ˆ

Ω

(aiju,ivk,j + aivk,iu) +

ˆ
Ω

(biu,ivk + duvk)

= −
ˆ

Ω

aijvk,ivk,j +

ˆ
Ω

(ai + bi)u,ivk +

ˆ
Ω

(duvk − ai(uvk),i)

≤ −λ
ˆ

Ω

|Dvk|2 + c‖vk‖2,{u>k}‖Dvk‖2,Ω

(4.2)

and hence
‖Dvk‖2,Ω ≤ c‖vk‖2,{u>k}. (4.3)

Applying the Sobolev embedding theorem in case n ≥ 3, we obtain

‖vk‖ 2n
n−2 ,Ω

≤ c‖vk‖2,{u>k} ≤ c‖vk‖ 2n
n−2 ,Ω

Ln({u > k}) 1
n .
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Assuming vk 6= 0 for some k, we obtain

Ln({u > k}) ≥ c−n.

This implies that u must be bounded, since if it was unbounded, then vk 6= 0
for all k and ˆ

Ω

|u|2 ≥
ˆ
{u>k}

|u|2 ≥ c−nk2.

But this implies u /∈ L2(Ω), a contradiction. Starting from (4.2) we can repeat
this calculation with {u > k} replaced by {Dvk 6= 0} and obtain for all 0 < k <
supu that

Ln({Dvk 6= 0}) ≥ c−n.

Since {Dvk 6= 0} ⊂ {u > k} and Dvk = 0 almost everywhere on {u = supu},
we obtain

c−n ≤ Ln({Dvk 6= 0}) ≤ Ln({k < u < supu})→ 0,

as k → supu, contradiction. Hence vk = 0 for all k and thus u ≤ 0.
Step 3: n = 2. Starting from (4.3) and applying the Sobolev embedding

with some 2− ε < p < 2 for small ε, we get

‖vk‖p∗,Ω ≤ c‖Dvk‖p,Ω ≤ c‖Dvk‖2,Ω ≤ c‖vk‖2,{u>k} ≤ c‖vk‖p∗,ΩLn({u > k})c

and the proof can be continued as in case n ≥ 3.
Step 4: n = 1. Again from (4.3) we obtain, using the embedding into Hölder

spaces,

|vk|0,α,Ω ≤ c‖Dvk‖2,Ω ≤ c

(ˆ
{u>k}

|vk|2
) 1

2

≤ c|vk|0,α,ΩLn({u > k}) 1
2

and the proof can be finished as in the previous steps.
This proves u ≤ 0 in any of the cases and by replacing u by −u, we obtain

u = 0.

4.1.4 Theorem (Existence of weak solutions). Let n ∈ N, Ω b Rn open and

L : W 1,2
0 (Ω)→ D′(Ω)

Lu = (aiju,j + aiu),i + biu,i + du

with coefficients in L∞(Ω),
ˆ

Ω

(dϕ− aiϕ,i) ≤ 0 ∀0 ≤ ϕ ∈ C∞c (Ω)

and
∀(ξi) ∈ Rn : aijξiξj ≥ λ|ξ|2

with λ > 0. Then L is a continuous linear isomorphism onto W 1,2
0 (Ω)′ with

continuous inverse.
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Proof. Step 1: First we prove this for a modified operator

L̃u = Lu− σu,

where a sufficiently large σ ∈ R will be chosen later. The map

L̃u ∈ D′(Ω)

is given by

L̃u(ϕ) = −
ˆ

Ω

(aiju,j + aiu)ϕ,i +

ˆ
Ω

(biu,i + du)ϕ−
ˆ

Ω

σuϕ

and hence
|L̃u(ϕ)| ≤ (c+ σ)‖u‖1,2,Ω‖ϕ‖1,2,Ω. (4.4)

Hence the map Lu, restricted to the dense subspace (C∞c (Ω), ‖ · ‖1,2,Ω) is con-
tinuous and thus extends uniquely to an element L̃u ∈W 1,2

0 (Ω)′. Now define a
bilinear form on W 1,2

0 (Ω) by

B(v, u) = L̃u(v).

Since (4.4) carries over to v ∈ W 1,2
0 (Ω), B is bounded as a bilinear form. Fur-

thermore −B is coercive, provided σ is large enough:

−B(u, u) =

ˆ
Ω

aiju,iu,j + (ai − bi)u,iu−
ˆ

Ω

(d− σ)u2

≥ λ‖Du‖2,Ω − ‖a− b‖∞,Ω
(
ε

2
‖Du‖2,Ω +

1

2ε
‖u‖2,Ω

)
− (‖d‖∞,Ω − σ)‖u‖2,Ω

≥ λ

2
‖Du‖2,Ω +

λ

2
‖u‖2,Ω

≥ cλ

2
‖u‖1,2,Ω,

provided that first ε is chosen small enough (in dependence of the data of the
problem) and then σ is chosen large enough. Due to Theorem 3.1.16, for every
ψ ∈W 1,2

0 (Ω)′ there exists a unique u ∈W 1,2
0 (Ω), such that for all ϕ ∈W 1,2

0 (Ω)

L̃(u)ϕ = B(ϕ, u) = ψ(ϕ).

Hence L̃ maps bijectively to W 1,2
0 (Ω) and due to the coercivity and the bound-

edness of −B this map is also continuous with continuous inverse.
Step 2: We show that the map we added,

I : W 1,2
0 (Ω)→W 1,2

0 (Ω)′

u 7→ I(u) =

ˆ
Ω

u·,

is compact. But I is just the restriction of the corresponding map defined on
L2(Ω) to the compactly embedded2 subspace W 1,2

0 (Ω). Hence I is compact.

2Rellich, Theorem 3.4.5
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Step 3: Now we prove the claim of the theorem for L. Unique solvability of
Lu = ψ is equivalent to unique solvability of

L̃u+ σIu = ψ,

which is in turn equivalent to unique solvability of

u+ σL̃−1Iu = L̃−1ψ.

Since L̃−1 ◦ I is compact, the Fredholm-alternative, Theorem 3.1.14, says that
id +(σL̃−1 ◦I) is surjective if and only if it is injective. However, the uniqueness
of solutions of

u+ σL̃−1 ◦ I = 0

follows from the uniqueness of solutions of Lu = 0, Lemma 4.1.3.

4.1.5 Remark (Sturm-Liouville problem). Since we did not restrict the dimen-
sion, the previous results contain a partial solution to the so-called Sturm-
Liouville problem, which is a Dirichlet problem for second order ordinary dif-
ferential equations: On an interval I = [a, b] let three functions p, q ∈ L∞(a, b)
and w ∈ C1([a, b]) be given, such that

p ≥ c > 0, w > 0.

The Sturm-Liouville problem asks to find pairs (u, λ), which solve the eigenvalue
problem

−(pu′)′ + qu = λwu

u(a) = u(b) = 0.

Since w ∈ C1([a, b]), we can rewrite this equation to

−
( p
w
u′
)′
− p

w2
w′u′ +

q

w
u = λu

and we see from Theorem 4.1.4, that for

λ ≤ min
x∈I

q(x)

w(x)

there are no nonzero solutions. Later we will also prove the existence of non-
vanishing solution for certain λ which violate this condition.

4.2 Regularity of weak solutions

We achieved existence and uniqueness of a solution u ∈W 1,2
0 (Ω) to

Lu = f

for a large class of right hand sides, namely for all f ∈ W 1,2
0 (Ω)′. The aim of

this section is to deduce higher regularity of u, once that f is more regular.
These estimates divide into interior estimates and boundary estimates. For the
case f ∈ L2(Ω) we will not only achieve this for the linear operator L we have
treated in the previous section, but for more general nonlinear divergence form
operators, since the proof does not essentially make use of a linear structure.
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Interior estimates
4.2.1 Theorem (Interior W 2,2-estimate). Let n ∈ N, Ω b Rn be open and
f ∈ L2

loc(Ω). Let A ∈ C1(Rn × R× Ω,Rn) satisfy

|∂xA(p, z, x)| ≤ c1A(c2A + |p|+ |z|), |∂zA|+ |∂pA| ≤ c1A

for some ciA > 0. Suppose B ∈ RRn×R×Ω is measurable and satisfies for almost
every (p, z, x),

|B(p, z, x)| ≤ c1B(c2B + |p|+ |z|).

Let
LA,B : W 1,2

0 (Ω)→ D′(Ω)

be a divergence form partial differential operator of second order in Ω, strictly
elliptic in W 1,2

0 (Ω) with ellipticity constant λ0 > 0. Let u ∈ W 1,2
loc (Ω) be a

solution of the distributional equality

−divA(Du, u, ·) +B(Du, u, ·) = f.

Then u ∈ W 2,2
loc (Ω) and for all Ω′ b Ω′′ b Ω there exists c depending on n, c1A,

c1B, λ0, Ln(Ω) and dist(Ω′, ∂Ω′′), such that

‖u‖2,2,Ω′ ≤ c(c2A + c2B + ‖u‖1,2,Ω′′ + ‖f‖2,Ω′′).

Proof. Let Ω′ b Ω′′ b Ω and ∆i
hu be the difference quotient of stepsize h in

direction 1 ≤ k ≤ n,

∆k
hu(x) =

u(x+ hek)− u(x)

h
, |h| < dist(Ω′, ∂Ω′′).

Due to the structure conditions of A there holds

A(Du, u, ·), B(Du, u, ·) ∈ L2(Ω). (4.5)

We rewrite the difference quotient of the functions Ai(Du, u, ·),

∆k
hA

i(Du, u, ·)

=
1

h

ˆ 1

0

d

dt
Ai(tDu(·+ hek) + (1− t)Du, tu(·+ hek) + (1− t)u, ·+ thek) dt

= Aij(∆k
hu),j + ai∆k

hu+ αik,
(4.6)

where

Aij =

ˆ 1

0

∂Ai

∂pj
(tDu(·+ h) + (1− t)Du, tu(·+ h) + (1− t)u, ·+ th) dt (4.7)

and

ai =

ˆ 1

0

∂Ai

∂z
, αik =

ˆ 1

0

∂Ai

∂xk
,

where the integrand terms are also evaluated at the convex combinations as in
(4.7).
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Let η ∈ C∞c (Ω′′), such that

η|Ω′ = 1.3

For |h| < min(dist(Ω′′, ∂Ω),dist(supp η, ∂Ω′′)) choose the test function

v = −∆k
−h(η2∆k

hu) ∈W 1,2
0 (Ω)

in the equality
ˆ

Ω

Ai(Du, u, ·)v,i +

ˆ
Ω

B(Du, u, ·)v =

ˆ
Ω

fv.4

There holdsˆ
Ω

η2∆k
hA

i(∆k
hu),i = −

ˆ
Ω

2ηη,i∆
k
hA

i∆k
hu−

ˆ
Ω

(f −B)∆k
−h(η2∆k

hu)

and hence by (4.6) we have for small ε > 0 that
ˆ

Ω

η2Aij(∆k
hu),i(∆

k
hu),j

= −
ˆ

Ω

2ηη,iA
ij(∆k

hu),j∆
k
hu−

ˆ
Ω

ai∆k
hu(η2(∆k

hu),i + 2ηη,i∆
k
hu)

−
ˆ

Ω

αik(η2(∆k
hu),i + 2ηη,i∆

k
hu)−

ˆ
Ω

(f −B)∆k
−h(η2∆k

hu)

≤
ˆ

Ω

η2

2
Aij(∆k

hu),i(∆
k
hu),j + 2

ˆ
Ω

Aijη,iη,j(∆
k
hu)2

+
cε

2

ˆ
Ω

η2|D(∆k
hu)|2 +

c

2ε

ˆ
supp η

(c2A + |u|2 + |Du|2 + (∆k
hu)2)

+
ε

2

ˆ
Ω

|D(η2∆k
hu)|2 +

1

2ε

ˆ
Ω′′
|f |2 +

1

2ε

ˆ
Ω′′
|B(Du, u, ·)|2,

(4.8)

where c = c(cA, |Ω|, λ0,dist(Ω′, ∂Ω)). Due to the strict ellipticity we may absorb
and term on the right hand side which contains D(∆k

hu), if we choose ε > 0
small enough. Thus (4.8) implies

‖D(∆k
hu)‖2,Ω′ ≤ c(c2A + c2B + ‖u‖1,2,Ω′′ + ‖f‖2,Ω′′),

where c = c(cA, λ0, cB ,Ln(Ω),dist(Ω′, ∂Ω′′)). This completes the proof in view
of Lemma 3.3.14.

4.2.2 Remark. For this illustration we suppose that B = 0. The next step
would be to deduce higher order estimates, once we know that the data of the
problem, A, f are more regular. The general strategy to accomplish this is to
apply the equation

−(Ai(Du, u, ·)),i = f

3Existence follows from Theorem 1.3.7.
4Due to (4.5) the distributional equality carries over to functions in W 1,2

0 (Ω).
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to a test function of the form
η = ϕ,j ,

where ϕ ∈ C∞c (Ω). Since we already know that u ∈ W 2,2, partial integration
would yield an equation for w = u,j namely

−
ˆ

Ω

∂Ai

∂pk
w,kϕ,i +

∂Ai

∂z
wϕi +

∂Ai

∂xj
ϕ,i = −

ˆ
Ω

f,jϕ

and thus

−
(
∂Ai

∂pk
w,k +

∂Ai

∂z
w +

∂Ai

∂xj

)
,i

= f,j ,

which formally is a divergence form equation as treated above. We would like
to apply the W 2,2-estimate to deduce that w ∈ W 2,2 and in turn u ∈ W 3,2.
However, the x dependence of the operator on the left hand side is now hidden
in the coefficients

∂Ai

∂pk
=
∂Ai

∂pk
(Du(x), u(x), x)

and similarly for the other coefficients.5 However, the assumptions of Theo-
rem 4.2.1 are not met, since we do not know that these coefficients are differen-
tiable with respect to x. To get higher regularity, more sophisticated techniques
are necessary and we will not perform this here. Instead we restrict to higher
regularity for linear equations.

4.2.3 Theorem (Higher interior estimates). Let n,m ∈ N, Ω b Rn open and
f ∈ Wm,2

loc (Ω). For 1 ≤ i, j ≤ n let aij , ai ∈ Cm+1(Ω̄) and bi, d ∈ Cm(Ω̄)
and suppose (aij) is strictly positive definite with ellipticity constant λ0. Let
u ∈W 1,2

loc (Ω) be a weak solution of

− (aiju,j + aiu),i + biu,i + du = f,

then
u ∈Wm+2,2

loc (Ω)

and for all Ω′ b Ω′′ b Ω there exists c > 0 such that

‖u‖m+2,Ω′ ≤ c(‖f‖m,2,Ω′′ + ‖u‖1,2,Ω′′),

where c depends on λ0, |aij |m+1,Ω, |ai|m+1,Ω, |bi|m+1,Ω, |d|m+1,Ω, Ln(Ω) and on
dist(Ω′, ∂Ω′′).

Proof. By induction. For m = 0 this is Theorem 4.2.1, since

A(p, z, x) = aij(x)pj + ai(x)z, B(p, z, x) = bipi + dz

and
|∂xkA(p, z, x)| = |aij,kpj + ai,kz| ≤ c1A(|p|+ |z|),

|∂zA|+ |∂pjA| = |ai|+ |aij | ≤ c1A

5Note that u not the unknown function anymore and fixed.

81



and aij is positive definite. Similar estimates hold for B. Also note that c2A =
c2B = 0. Now let m > 0 and suppose the claim holds for m − 1. First of all
u ∈Wm+1,2

loc (Ω) with the corresponding estimate. For 1 ≤ k ≤ n choose

η = ϕ,k

with ϕ ∈ C∞c (Ω). Then
ˆ

Ω

(aiju,j + aiu)η,i +

ˆ
Ω

(biu,i + du)η =

ˆ
Ω

fη

and hence, with w = u,k,
ˆ

Ω

(aij,ku,j + aijw,j + ai,ku+ aiw)ϕ,i +

ˆ
Ω

(bi,ku,i + biw,i + d,ku+ dw)ϕ

=

ˆ
Ω

f,kϕ.

Thus w = u,k ∈W 1,2
loc (Ω) satisfies

−(aijw,j + aiw),i + biw,i + dw = f,k + (aij,ku,j),i + (ai,ku),i − bi,kui − d,ku

=: F ∈Wm−1,2
loc (Ω).

Hence by induction hypothesis w ∈Wm+1,2
loc (Ω). Let Ω′ b Ω′′′ b Ω′′. Then

‖w‖m+1,2,Ω′ ≤ c(‖F‖m−1,2,Ω′′′ + ‖w‖1,2,Ω′′′).

There hold

‖w‖1,2,Ω′′′ ≤ ‖u‖2,2,Ω′′′ ≤ c(‖f‖2,Ω′′ + ‖u‖1,2,Ω′′)

and

‖F‖m−1,2,Ω′′′ ≤ c(‖f‖m,2,Ω′′ + ‖u‖m+1,2,Ω′′′) ≤ c(‖f‖m,2,Ω′′ + ‖u‖1,2,Ω′′).

Combining these estimates gives the claim.

Due to Exercise 3.4.4 we obtain the following local regularity result.

4.2.4 Corollary. Let n ∈ N and Ω ⊂ Rn open. Let u ∈ W 1,2
loc (Ω) be a distri-

butional solution to the linear problem

−(aiju,j + aiu),i + biu,i + du = f,

where (aij) is locally strictly positive definite and f as well as all coefficients are
smooth. Then u ∈ C∞(Ω).

Proof. We know that u ∈ Wm,2
loc (Ω) for all m ∈ N. Let Ω′ b Ω and choose a

cut-off function η ∈ C∞c (Ω) with

η|Ω̄′ = 1.

Then ηu ∈Wm,2
0 (Ω) for all m and hence u ∈ C∞(Ω′).
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Boundary estimates
In this section we extend the previous regularity results to the boundary ∂Ω.
Roughly, on a domain Ω with smooth boundary and with data smooth up to
the boundary, we want to conclude that a W 1,2

0 (Ω) solution is of class C∞(Ω̄).
We proceed as in the previous subsection, proving the first step for general
divergence form operators and the inductive step for linear operators.

In order to prove boundary estimates, we have to transform the equation
onto a simpler domain. We use straightening of the boundary. Hence we first
have to calculate, how an equation in divergence form transforms under a change
of coordinates.

4.2.5 Lemma. Let n ∈ N, Ω, Ω̃ ⊂ Rn open and ψ ∈ C1(Ω, Ω̃) be a coordinate
transformation. Let f ∈ L1

loc(Ω) and A,B ∈ RRn×R×Ω. Let u ∈ W 1,2
loc (Ω) be a

weak solution of
−divA(Du, u, ·) +B(Du, u, ·) = f.

Then ũ = u ◦ ψ−1 ∈W 1,2
loc (Ω̃) is a weak solution of

− div
(√

det g(Dψ(·) ◦A)(Dũ(·)Dψ ◦ ψ−1, ũ, ·)
)

= (f −B(Dũ(·)Dψ ◦ ψ−1, ũ, ·))
√

det g,

where g is the Gramian matrix associated to ψ.

Proof. Let ϕ̃ ∈ C∞c (Ω̃) and ϕ = ϕ̃ ◦ ψ. Thenˆ
Ω̃

ϕ̃,k(ψk,i(x̃) ◦Ai)(Dũ(x̃)Dψ ◦ ψ−1(x̃), ũ(x̃), x̃)
√

det g(x̃) dx̃

=

ˆ
Ω̃

ϕ,i(ψ
−1(x̃))Ai(Du(ψ−1(x̃)), u ◦ ψ−1(x̃), x̃)

√
det g(x̃) dx̃

=

ˆ
Ω

ϕ,i(x)Ai(Du(x), u(x), x) dx

=

ˆ
Ω

(f(x)−B(Du, u, x))ϕ(x) dx

=

ˆ
Ω̃

(f(ψ−1(x̃))−B(Dũ(x̃)Dψ ◦ ψ−1(x̃), ũ(x̃), x̃))ϕ(x̃)
√

det g(x̃) dx̃.

Due to this lemma it will be possible to reduce the boundary estimates to
the canonical situation of a straight boundary; in the sequel we use the notation

B+
ρ (0) = Bρ(0) ∩ {xn > 0}, ρ > 0,

and B̄+
ρ (0) for its closure. After the transformation we will not be in the situa-

tion that the transformed solution u is in W 1,2
0 (B+

ρ (0)), but it will only be zero
on the flat boundary portion of B+

ρ (0). Hence we have to define what this is
supposed to mean.

4.2.6 Definition (Weak boundary values). Let n,m ∈ N, Ω ⊂ Rn open and
T ⊂ ∂Ω closed. We say that a function u ∈ Wm,2(Ω) equals ψ ∈ Wm,2(Ω) on
T in the sense of Wm,2,

u|T = ψ
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if u− ψ can be approximated in the Wm,2-norm by functions ϕ ∈ C∞c (Ω̄\T ).

4.2.7 Theorem (Local W 2,2-boundary estimates). Let n ∈ N, 0 < ρ ≤ 1 and
f ∈ L2(B+

ρ (0)). Let A ∈ C1(Rn × R×B+
ρ (0),Rn) satisfy

|∂xA(p, z, x)| ≤ c1A(c2A + |p|+ |z|), |∂zA|+ |∂pA| ≤ c1A

for some ciA > 0. Suppose B ∈ RRn×R×B+
ρ (0) is measurable and satisfies for

almost every (p, z, x),

|B(p, z, x)| ≤ c1B(c2B + |p|+ |z|).

Let
LA,B : W 1,2(B+

ρ (0))→ D′(B+
ρ (0))

be a divergence form partial differential operator of second order in B+
ρ (0),

LA,B(u) = −divA(Du, u, ·) +B(Du, u, ·),

which is strictly elliptic in W 1,2(B+
ρ (0)) with ellipticity constant λ > 0. Let

u ∈W 1,2(B+
ρ (0)) be a solution of the problem

LA,B(u) = f

u|{xn=0} = 0 in W 1,2.

Then for all 0 < ρ1 < ρ there holds

u ∈W 2,2(B+
ρ1

(0))

and there exists c depending on n, c1A, c
1
B, λ, and ρ− ρ1 such that

‖u‖2,2,B+
ρ1

(0) ≤ c(c
2
A + c2B + ‖u‖1,2,B+

ρ (0) + ‖f‖2,B+
ρ (0)).

Proof. For ρ1 < ρ2 < ρ choose

η ∈ C∞c (Bρ2
(0)), η|Bρ1 (0) ≡ 1.

We first estimate the difference quotient in horizontal directions, i.e. for suffi-
ciently small h we choose the test function

−∆k
−h(η2∆k

hu) ∈W 1,2
0 (B+

ρ (0)), 6 1 ≤ k ≤ n− 1.

Then ˆ
B+
ρ2

(0)

∆k
hA

i(∆k
huη

2),i = −
ˆ
B+
ρ2

(0)

(f −B)∆k
−h(∆k

huη
2).

As in the proof of Theorem 4.2.1 we write for 0 < h < dist(B+
ρ2

(0), ∂Bρ)

∆k
hA

i(Du, u, ·)

=
1

h

ˆ 1

0

d

dt
Ai(tDu(·+ hek) + (1− t)Du, tu(·+ hek) + (1− t)u, ·+ thek) dt

= Aij(∆k
hu),j + ai∆k

hu+ αik,

6We leave this as an exercise.
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where

Aij =

ˆ 1

0

∂Ai

∂pj
(tDu(·+ h) + (1− t)Du, tu(·+ h) + (1− t)u, ·+ th) dt (4.9)

and

ai =

ˆ 1

0

∂Ai

∂z
, αik =

ˆ 1

0

∂Ai

∂xk
,

where the integrand terms are also evaluated at the convex combinations as in
(4.9). We obtain

ˆ
B+
ρ2

(0)

η2Aij(∆k
hu),i(∆

k
hu),j

= −
ˆ
B+
ρ2

(0)

2ηη,iA
ij(∆k

hu),j∆
k
hu−

ˆ
B+
ρ2

(0)

ai∆k
hu(η2(∆k

hu),i + 2ηη,i∆
k
hu)

−
ˆ
B+
ρ2

(0)

αik(η2(∆k
hu),i + 2ηη,i∆

k
hu)−

ˆ
B+
ρ2

(0)

(f −B)∆k
−h(η2∆k

hu)

≤
ˆ
B+
ρ2

(0)

η2

2
Aij(∆k

hu),i(∆
k
hu),j + 2

ˆ
B+
ρ2

(0)

Aijη,iη,j(∆
k
hu)2

+
cε

2

ˆ
B+
ρ2

(0)

η2|D(∆k
hu)|2 +

c

2ε

ˆ
B+
ρ2

(0)

η(c2A + |u|2 + |Du|2 + (∆k
hu)2)

+
ε

2

ˆ
B+
ρ2

(0)

|D(η2∆k
hu)|2 +

1

2ε

ˆ
B+
ρ2

(0)

|f |2 +
1

2ε

ˆ
B+
ρ2

(0)

|B(Du, u, ·)|2.

As in the proof of Theorem 4.2.1 this implies

‖D(∆k
hu)‖2,B+

ρ1
(0) ≤ c(c

2
A + c2B + ‖u‖1,2,B+

ρ2
(0) + ‖f‖2,B+

ρ2
(0)).

From Lemma 3.3.14 we obtain that Du is weakly differentiable in any direction
1 ≤ k ≤ n− 1 and∑

i+j<2n

‖u,ij‖2,B+
ρ1

(0) ≤ c(c
2
A + c2B + ‖u‖1,2,B+

ρ2
(0) + ‖f‖2,B+

ρ2
(0)).

To estimate u,nn we use the differential equation directly. Since we already
know from Theorem 4.2.1 that u ∈ W 2,2

loc (B+
ρ2

(0)) and A is differentiable with
bounded ∂pA and ∂zA, from the chain rule we obtain

−∂A
i

∂pj
(Du, u, ·)u,ij −

∂Ai

∂xi
(Du, u, ·)− ∂Ai

∂z
(Du, u, ·)ui = f −B(Du, u, ·).

Using ann ≥ λ, we obtain almost everywhere

|u,nn| ≤ c
∑

i+j<2n

|u,ij |+ c1A(c2A + |u|+ |Du|) + |f |+ c1B(c2B + |u|+ |Du|).

Similar to the interior estimates we prove higher boundary regularity. There-
fore we need the following lemma:
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4.2.8 Lemma. Let n ∈ N, 0 < ρ2 < ρ and u ∈ W 2,2(B+
ρ (0)) vanish on

{xn = 0} in the sense of W 1,2. Then for 1 ≤ k ≤ n − 1, u,k ∈ W 1,2(B+
ρ2

(0))
vanishes on {xn = 0} in the sense of W 1,2.

Proof. Let η ∈ C∞c (Bρ(0)) with η|B+
ρ2

(0) = 1, then ηu ∈ W 2,2(B+
ρ (0)). For

ρ2 < ρ1 < ρ and small h, the difference quotients

∆k
h(ηu) ∈W 1,2

0 (B+
ρ1

(0))

converge to (ηu),k in W 1,2
0 (B+

ρ1
(0)) as h → 0, Lemma 3.3.13.7 Due to the

closedness of W 1,2
0 (B+

ρ1
(0)) we have

(ηu),k ∈W 1,2
0 (B+

ρ1
(0)).

Hence (ηu),k vanishes on {xn = 0}∩B+
ρ1

(0) and hence the claimed result follows.

4.2.9 Theorem. Let n,m ∈ N, 0 < ρ ≤ 1 and f ∈ Wm,2(B+
ρ (0)). For

1 ≤ i, j ≤ n let aij , ai ∈ Cm+1(B̄+
ρ (0)) and bi, d ∈ Cm(B̄+

ρ (0)) and suppose (aij)
is strictly positive definite with ellipticity constant λ. Let u ∈ W 1,2(B+

ρ (0)) be
a weak solution of

−(aiju,j + aiu),i + biu,i + du = f

u|{xn=0} = 0 in W 1,2.

Then for all 0 < ρ1 < ρ there holds

u ∈Wm+2,2(B+
ρ1

(0))

and
‖u‖m+2,2,B+

ρ1
(0) ≤ c

(
‖f‖m,2,B+

ρ (0) + ‖u‖1,2,B+
ρ (0)

)
,

where c depends on λ, |aij |m+1,Ω, |ai|m+1,Ω, |bi|m+1,Ω, |d|m+1,Ω and on ρ− ρ1.

Proof. For m = 0 this is Theorem 4.2.7, which implies

‖u‖2,2,B+
ρ1

(0) ≤ c
(
‖u‖1,2,B+

ρ (0) + ‖f‖2,B+
ρ (0)

)
,

Let m > 0 and suppose the result is true for m − 1. Let ρ1 < ρ2 < ρ. First of
all

u ∈Wm+1,2(B+
ρ2

(0))

with the corresponding estimate. Then, for 1 ≤ k ≤ n− 1,

w = u,k ∈Wm,2(B+
ρ2

(0)),

7Note that the formal assumptions of this lemma are not quite met, since
dist(B+

ρ2 (0), ∂B+
ρ (0)) = 0. But due to 1 ≤ k ≤ n − 1 we do not leave the domain of def-

inition of u and hence the proof of Lemma 3.3.13 carries over.
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from Lemma 4.2.8 we obtain w = 0 on {xn = 0} in the sense of W 1,2 on a
possibly slightly smaller set and w satisfies

−(aijw,j + aiw),i + biw,i + dw = f,k + (aij,ku,j),i + (ai,ku),i − bi,kui − d,ku
=: F ∈Wm−1,2(B+

ρ2
(0)).

By induction hypothesis there holds

w ∈Wm+1,2(B+
ρ1

(0))

and
‖w‖m+1,2,B+

ρ1
(0) ≤ c

(
‖F‖m−1,2,B+

ρ2
(0) + ‖w‖1,2,B+

ρ2
(0)

)
and the proof can be completed as in Theorem 4.2.3.

Combining all of the interior and boundary estimates by using a partition
of unity, we obtain the full Wm,2-existence and regularity theorem for weak
solutions, for which we can also include more general boundary values. This
is the main result of this chapter and the exact proof is recommended as an
exercise.

4.2.10 Theorem. Let n ∈ N, Ω b Rn open with Cm+2-boundary, f ∈
Wm,2(Ω) and ψ ∈ Wm+2,2(Ω). Let aij , ai ∈ Cm+1(Ω̄), bi, d ∈ Cm(Ω̄) and,
for some λ > 0

∀(ξi) ∈ Rn : aijξiξj ≥ λ|ξ|2.

Let u ∈W 1,2(Ω) be a weak solution of the equation

(aiju,j + aiu),i + biu,i + du = f

u|∂Ω = ψ in W 1,2.
(4.10)

Then
u ∈Wm+2,2(Ω)

and there holds

‖u‖m+2,2,Ω ≤ c(‖u‖2,Ω + ‖f‖m,2,Ω + ‖ψ‖m+2,2,Ω),

where c only depends on the data of the problem.8 If in addition there holds

d+ ai,i ≤ 0,

then (4.10) admits a unique solution in Wm+2,2(Ω).

This theorem, together with Corollary 3.5.4, implies that if all data are
smooth, the solution is of class C∞(Ω̄). The only piece that is missing for the
classical Dirichlet problem to be solved, is that we have to show that

v ∈ C∞(Ω̄) ∩W 1,2
0 (Ω) ⇒ v|∂Ω = 0.

8and not on u.
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4.2.11 Lemma. Let n ∈ N, Ω b Rn open with C1-boundary. Let v ∈ C1(Ω̄).
Then

v ∈W 1,2
0 (Ω) ⇒ v|∂Ω = 0.

Proof. We prove that the restriction operator

R : (C1(Ω̄), ‖ · ‖1,2,Ω)→ L1(∂Ω)

u 7→ u|∂Ω

is continuous. There suppose first, that supp(u) ⊂ U , where U is the domain of
a straightening function ψ. Then

ˆ
∂Ω

|u| =
ˆ
ψ(∂Ω∩U)

|u ◦ ψ−1(x̂, 0)|
√

det g∂Ω(x̂) dx̂

≤ c
ˆ
ψ(∂Ω∩U)

ˆ ∞
0

|Du(ψ−1(x̂, xn))| dx̂dxn

≤ c
ˆ

Ω

|Du|.

A partition of unity gives the continuity of R. Hence there is a unique extension
of R to W 1,2(Ω). If v ∈ W 1,2

0 (Ω), then a sequence (ϕk)k∈N of functions in
C∞c (Ω) converges to v in the W 1,2-norm and hence

0 = R(ϕk)→ R(v) = v|∂Ω.

We obtain existence and regularity of solutions to the classical Dirichlet
problem.

4.2.12 Theorem. Let n ∈ N and Ω b Rn open with smooth boundary. Let
u ∈W 1,2(Ω) be a distributional solution to the linear Dirichlet problem

(aiju,j + aiu),i + biu,i + du = f

u|∂Ω = ψ in W 1,2,

where (aij) is strictly positive definite and f , ψ as well as all coefficients are
smooth up to the boundary. Then u ∈ C∞(Ω̄) and

u|∂Ω = ψ|∂Ω.

If in addition there holds
d+ ai,i ≤ 0,

then the classical Dirichlet problem

(aiju,j + aiu),i + biu,i + du = f in Ω

u|∂Ω = ψ on ∂Ω

is uniquely solvable in C∞(Ω̄).
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4.3 Dirichlet spectrum of the Laplace operator
From Theorem 3.1.21 we obtain the following spectral theorem for the Laplace
operator.

4.3.1 Theorem. Let n ∈ N and Ω b Rn with smooth boundary. Then

−∆: W 1,2
0 → D′(Ω)

has countably many eigenvalues λ, i.e. exists u 6= 0 such that
ˆ

Ω

〈Du,Dϕ〉 = λ

ˆ
Ω

uϕ ∀ϕ ∈ C∞c (Ω).

If we order the eigenvalues
λ1 ≤ λ2 ≤ . . . ,

then
lim
i→∞

λi =∞.

The normalised eigenfunctions ui are of the class C∞(Ω̄) and form an L2-
orthonormal basis of L2(Ω). Furthermore there holds

ˆ
Ω

〈Dui, Duj〉 = λiδij ∀1 ≤ i, j <∞.

Proof. We justify the applicability of Theorem 3.1.21. Set H = W 1,2
0 (Ω),

K(u, v) =

ˆ
Ω

uv, B(u, v) =

ˆ
Ω

〈Du,Dv〉 .

Then both K and B are symmetric and continuous due to Hölder’s inequality.
Furthermore K is compact, since for a bounded sequence (uk)k∈N in W 1,2

0 (Ω),
Rellich’s theorem implies the existence of a convergent subsequence

uk → u

in L2(Ω). B is coercive relative K, since

B(u, u) =

ˆ
Ω

|Du|2 = ‖u‖21,2,Ω − ‖u‖22,Ω = ‖u‖1,2,Ω −K(u, u).

Thus from Theorem 3.1.21 we obtain a countable family of eigenvalues λi
and eigenfunctions ui, which are smooth due to the regularity theorem The-
orem 4.2.12. They are complete in W 1,2

0 , but since the L2-closure of W 1,2
0 (Ω)

equals L2(Ω), they also form a basis of L2(Ω). The orthogonality relations follow
as well.
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Chapter 5

The model equations

In this chapter we collect some classical results for the model equations, namely
for the Laplace- and Poisson equation, the heat equation and the wave equation.
We will discuss fundamental solutions and give some existence result for the heat
equation using Laplace eigenfunctions.

5.1 Laplace equation

Mean value property and its consequences
The following theorem is the well known mean value property for harmonic
functions, which was first proved by Riemann in the case n = 2 for harmonic
functions, [15]. The presentation of most of the results in this section is taken
from [5].

5.1.1 Theorem. Let 2 ≤ n ∈ N and Ω ⊂ Rn open. For a function u ∈ L1
loc(Ω)

the following statemants are equivalent.

(i) u ∈ C∞(Ω) and ∆u = 0.

(ii) u satisfies the mean value property, i.e. for almost every x ∈ Ω there holds

u(x) =
1

ωnrn

ˆ
Br(x)

u ∀Br(x) b Ω,

where ωn is the measure of the n-dimensional unit ball.

Proof. (i) ⇒ (ii): Define

f(r) =
1

ωnrn

ˆ
Br(x)

u =
1

ωn

ˆ
B1(0)

u(x+ rz) dz

=
1

ωn

ˆ 1

0

ˆ
Sn−1

u(x+ rsξ)sn−1dξds.

Differentiation gives

f ′(r) =
1

ωn

ˆ 1

0

ˆ
Sn−1

sn−1 〈∇u(x+ rsξ), sξ〉 dξds.
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Then, letting v(z) = u(x+ rsz), we obtain

f ′(r) =
1

ωn

ˆ 1

0

sn−1

r

ˆ
Sm−1

〈∇v(ξ), ξ〉 dξds

=
1

ωn

ˆ 1

0

sn−1

r

ˆ
B1(0)

∆v ds

= 0.

Thus, f is constant and

|f − u(x)| ≤ 1

ωnrn

ˆ
Br(x)

|u− u(x)| ≤ sup
Br(x)

|u− u(x)| → 0, r → 0,

due to continuity.
(ii) ⇒ (i): First we note that a function u ∈ L1

loc(Ω) satisfying the mean
value property is continuous in Ω, since for x, y ∈ Ω and small ε > 0 we have

|u(x)− u(y)| ≤ 1

ωnεn

∣∣∣∣∣
ˆ
Bε(x)

u−
ˆ
Bε(y)

u

∣∣∣∣∣
≤ 1

ωnεn

(ˆ
Bε(x)\Bε(y)

|u|+
ˆ
Bε(y)\Bε(x)

|u|

)
→ 0, if y → x.

Thus the mean value property is actually satisfied everywhere. Now we calculate
the convolution with a radially symmetric mollifier:

uε(x) =

ˆ
Bε(x)

u(y)ηε(|y − x|) dy =

ˆ ε

0

ˆ
∂B1(x)

u(rξ)ηε(r)r
n−1 dξdr

=

ˆ ε

0

ηε(r)r
n−1

ˆ
∂B1(x)

u(rξ) dξdr

=

ˆ ε

0

ηε(r)r
n−1

(
r1−n d

dr

ˆ
Br(x)

u

)
dr

=

ˆ ε

0

ηε(r)
d

dr
(ωnr

nu(x))dr

= u(x)

ˆ ε

0

nωnr
n−1ηε(r)dr = u(x).

Thus u coincides with its convolution and is consequently smooth. Suppose at
some x ∈ Ω we had ∆u(x) > 0. Then the function f from the first part of the
proof would be strictly increasing, in contradiction to the mean value property.
Similarly ∆u(x) < 0 leads to a contradiction.

For harmonic functions we obtain nice derivative estimates. For an explicit
value of the constant involved see [5, Thm. 2.10].

5.1.2 Proposition. Let 2 ≤ n ∈ N, Ω ⊂ Rn open and u ∈ C∞(Ω) harmonic.
Then for Br = Br(x) ⊂ Ω there holds

|u,α(x)| ≤ C(n, |α|)
(

1

r

)|α|
sup
Br(x)

|u|.
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Proof. By induction on the order of the multiindex.
|α| = 1: The function u,i is harmonic in Ω and satisfies

u,i(x) =
2n

ωnrn

ˆ
B r

2

u,i =
2n

ωnrn

ˆ
∂B r

2

u 〈ν, ei〉 .

Thus
|u,i(x)| ≤ 2n

r
sup
B r

2

|u|.

Let the claim hold for |α| = k, then

|u,i1...ik+1
(x)| ≤ 2n

r
sup
B r

2

|u,i1...ik | ≤
2n

rk+1
C(m, k) sup

Br

|u|.

The following Liouville theorem is a direct consequence.

5.1.3 Theorem. Every bounded and harmonic function on Rn, n ≥ 1, is
constant.

Proof. For n = 1 every harmonic function is linear, so in this case the result
holds. For n ≥ 2, in Proposition 5.1.2 let r →∞.

There is another corollary, the proof of which is an exercise:

5.1.4 Exercise. Let n ≥ 1. Then every bounded sequence of harmonic func-
tions on a domain Ω ⊂ Rn contains a subsequence, which converges locally
uniformly to a harmonic function on Ω.

From the mean value property we obtain the following famous inequality.

5.1.5 Theorem (Harnack). Let 2 ≤ n ∈ N and u be a non-negative harmonic
function on an open set Ω ⊂ Rn. Then for any connected Ω′ b Ω there exists a
constant c = c(n,Ω′,Ω), such that

sup
Ω′

u ≤ c inf
Ω′
u.

Proof. Let y ∈ Ω and B4R(y) ⊂ Ω. Then for x1, x2 ∈ BR(y) there holds

u(x1) =
1

ωnRn

ˆ
BR(x1)

u ≤ 1

ωnRn

ˆ
B2R(y)

u,

u(x2) =
1

ωn3nRn

ˆ
B3R(x2)

u ≥ 1

ωn3nRn

ˆ
B2R(y)

u

and hence
u(x1) ≤ 3nu(x2)

and thus
sup
BR(y)

u ≤ 3n inf
BR(y)

u.

Let C be a closed path between two points x and z and cover C by finitely many
balls of radius R, such that 4R < dist(C, ∂Ω). Apply the previous estimate to
each ball.
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Fundamental solution
We want to find a nontrivial radially symmetric solution Γ of the Laplace equa-
tion in Rn. Therefore we calculate ∆Γ, where

Γ(x) = γ(r) = γ(|x|).

There holds

Γ,i = γ′
xi
|x|
, Γ,ij = γ′′

xixj
|x|2

+ γ′
δij
|x|
− γ′xixj

|x|3
.

Thus
∆Γ = γ′′ +

n− 1

r
γ′.

Hence if we put

γ(r) =

{
log r, n = 2

r2−n, n ≥ 3

for r > 0, we may make the following definition.

5.1.6 Definition (Fundamental solution of Laplace’s equation). Let 2 ≤ n ∈
N. The function

Γ: Rn\{0} → R

Γ(x) =

{
1

2π log(|x|), n = 2
1

n(2−n)ωn
|x|2−n, n ≥ 3

is called the fundamental solution of the Laplace equation.

Thus for every y ∈ Rn, the function Γ(· − y) is harmonic in Rn\{y}. But we
can say even more.

5.1.7 Proposition. Let 2 ≤ n ∈ N and y ∈ Rn then Γ(· − y) ∈W 1,1
loc (Rn) and

∆Γ(· − y) = δy.
1

Proof. To show that Γ(· − y) ∈W 1,1
loc (Rn) we note that there holds

∂xiΓ(x− y) =
1

nωn

xi − yi
|x− y|n

and hence we obtain the following estimate:

|DxΓ(x− y)| ≤ 1

nωn
|x− y|1−n.

1This is the reason for the choice of the constants in the definition of the fundamental
solution.
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Hence the weak derivative, if it exists, will be integrable, as well as the function
itself. Thus it remains to check that Γ(· − y) is weakly differentiable. Let
ϕ ∈ C∞c (Rn). Then for ε > 0 there holds
ˆ
Rn

Γ(· − y)ϕ,i dx =

ˆ
Rn\B̄ε(y)

Γ(x− y)ϕ,i(x) dx+

ˆ
B̄ε(y)

Γ(x− y)ϕ,i(x) dx

= −
ˆ
Rn\B̄ε(y)

Γ,i(x− y)ϕ(x) dx

+

ˆ
∂Bε(y)

Γ(x− y)ϕ(x)

〈
y − x
|y − x|

, ei

〉
dx

+

ˆ
B̄ε(y)

Γ(x− y)ϕ,i(x) dx

→ −
ˆ
Rn

Γ,i(x− y)ϕ(x) dx

as ε → 0, since all functions are integrable. The weak differentiability follows.
To prove the second claim we show

ˆ
Rn

Γ(x− y)∆ϕ(x) dx = ϕ(y) ∀ϕ ∈ C2
c (Rn).

Since Γ(· − y) has a singularity at y, we can not just apply partial integration.
First we must cut out the singularity and then perform a detailed analysis at
the point y. With the help of the second Green’s formula, Exercise 1.4.6, we
deduce ˆ

Rn
Γ(x− y)∆ϕ(x) dx

=

ˆ
Rn\B̄ε(y)

Γ(x− y)∆ϕ(x) dx+

ˆ
B̄ε(y)

Γ(x− y)∆ϕ(x) dx

= −
ˆ
Rn\B̄ε(y)

〈∇xΓ(x− y),∇ϕ(x)〉 dx+

ˆ
∂Bε(y)

Γ(· − y) 〈∇ϕ, ν〉

+

ˆ
B̄ε(y)

Γ(x− y)∆ϕ(x) dx.

(5.1)

The second and third term on the right hand side will vanish in the limit as
ε→ 0. Hence we only have to investigate the first term:

−
ˆ
Rn\B̄ε(y)

〈∇xΓ(· − y),∇ϕ〉 = −
ˆ
∂Bε(y)

ϕ(x)

〈
∇xΓ(x− y),

y − x
|y − x|

〉
dx

=
1

nωn

ˆ
∂Bε(y)

ϕ(x)
1

|y − x|n−1
dx

→ ϕ(y).

Letting ε→ 0 in (5.1) gives the result.

5.1.8 Corollary (Representation formula for ∆). Let 2 ≤ n ∈ N and f ∈
C2
c (Rn). Then

u(x) =

ˆ
Rn

Γ(x− y)f(y) dy
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defines a C2(Rn)-function and solves

∆u = f.

Moreover, if n ≥ 3, every bounded solution u ∈ C2(Rn) of ∆u = f has this form
up to a constant.

Proof.

u(x) =

ˆ
Rn

Γ(z)f(x− z) dz.

Hence u ∈ C2(Rn) and the result follows from Proposition 5.1.7. The uniqueness
follows from the Liouville theorem. Note that in case n = 2, u does not need to
be bounded.

Green’s function
Corollary 5.1.8 provides a way to explicitly write down a solution to

∆u = f,

on the whole Rn, once the function f ∈ C2
c (Rn) is known. But what about

the Dirichlet problem in domains Ω with given boundary values? We want to
construct a similar integration kernel as Γ, such that we get a representation
formula for solutions of the Dirichlet problem on a domain, i.e. we want to give
a formula for the solution to

∆u = f

u|∂Ω = g,
(5.2)

where ∂Ω ∈ C∞ and g ∈ C∞(Ω̄). The obvious strategy is to use Γ to get
a solution to ∆u = f and then use a correction term to adjust the boundary
values. This correction term shall not destroy ∆u = f again, so we want to
make it harmonic.

5.1.9 Definition (Green’s function for a domain). Let 2 ≤ n ∈ N and Ω b Rn
with smooth boundary. The Green’s function for Ω is defined by

G(x, y) = Γ(x− y)− φx(y), x, y ∈ Ω, x 6= y,

where φx is the unique solution of

∆φx = 0 in Ω

φx = Γ(· − x) on ∂Ω.

We obtain

5.1.10 Proposition. Let 2 ≤ n ∈ N and Ω b Rn with smooth boundary. Let
f, g ∈ C∞(Ω̄). Then the function

u(x) =

ˆ
Ω

G(x, y)f(y) dy +

ˆ
∂Ω

g(y)
∂G

∂νy
(x, y) dy

solves eq. (5.2).
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Proof. We already know a solution to exist, so call it u. Let x ∈ Ω. From the
second Green’s identity applied to the domain Ω\B̄ε(x) we obtain

ˆ
∂Ω

g(y)
∂G

∂νy
(x, y) dy =

ˆ
Ω\B̄ε(x)

〈∇u,∇G(x, ·)〉 −
ˆ
∂Bε(x)

u(y)
∂G

∂νy
(x, y) dy

= −
ˆ

Ω\B̄ε(x)

f(y)G(x, y) dy +

ˆ
∂Bε(x)

∂u

∂ν
G(x, ·)

−
ˆ
∂Bε(x)

u(y)
∂G

∂νy
(x, y) dy

→ −
ˆ

Ω

f(y)G(x, y) dy + u(x)

as ε→ 0. Hence u is given by the desired formula.

5.1.11 Remark. (i) Of course this representation formula is not very explicit,
since it involves the construction of a harmonic function with given bound-
ary values. However, it is completely determined by the fundamental so-
lution. For special domains such as a half space and balls one can write
down the G explicitly.

(ii) The regularity assumptions of the data can usually be weakened. However,
since we apply the regularity and existence theory in order to get existence
of a Green’s function, we stick to the smooth case in the above definitions.

5.1.12 Exercise (Green’s function for a ball). Let 2 ≤ n ∈ N, 0 6= x ∈ Rn
and denote by

x̄ =
R2

|x|2
x

the inversion at ∂BR(0).

(i) Prove that

G(x, y) =

{
Γ(|x− y|)− Γ

(
|y|
R |x− ȳ|

)
, y 6= 0

Γ(|x|)− Γ(R), y = 0

is the Green’s function for BR(0).

(ii) Let g ∈ C0(∂Ω). Prove that

u(x) =

{
R2−|x|2
nωnR

´
∂BR(0)

g(y)
|x−y|n dy, x ∈ BR(0)

g(x), x ∈ ∂BR(0)

defines a harmonic function with boundary values g.

Remark: Note that by putting x = 0 we recover the mean value property
of harmonic functions.
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Perron’s method
Perron’s method [13] provides a very elegant and powerful way to construct
harmonic functions on a domain with given continuous boundary values. It
does not rely on any previous results except the maximum principle for harmonic
functions and the solvability of the Dirichlet problem in balls. The presentation
follows [5]. We need several preliminary definitions and results.

5.1.13 Definition (Sub- and Superharmonic functions). Let 2 ≤ n ∈ N and
Ω ⊂ Rn open. A function u ∈ C0(Ω) is called subharmonic, if for every ball
B̄ ⊂ Ω and every harmonic function h ∈ C∞(B̄) there holds

u|∂B ≤ h|∂B ⇒ u ≤ h.

u is called superharmonic, if −u is subharmonic.

5.1.14 Exercise (Classical subharmonic functions). Let 2 ≤ n ∈ N and Ω ⊂
Rn open. Suppose u ∈ C2(Ω) is subharmonic. Prove that

∆u ≥ 0.

5.1.15 Proposition. Let 2 ≤ n ∈ N and Ω ⊂ Rn be a domain. Let v ∈ C0(Ω̄)
superharmonic and u ∈ C0(Ω̄) subharmonic. Then there hold

(i) u satisfies the strong maximum principle in Ω.

(ii)
v|∂Ω ≥ u|∂Ω ⇒

(
v|Ω > u|Ω or v ≡ u

)
.

Proof. It is enough to prove (ii). The set

A = {x ∈ Ω: u(x)− v(x) = sup
Ω

(u− v)}.

is closed in Ω. If it was not open, then there existed x ∈ A and a ball B ⊂ Ω
around x with

(u− v)|∂B 6≡M.

Denote by ū and v̄ the harmonic extension of u and v in B. Then

M ≥ max
∂B

(ū− v̄) ≥ ū(x)− v̄(x) ≥ u(x)− v(x) = M.

Hence ū−v̄ ≡M , a contradiction. Hence, if the function u−v attains an interior
maximum, it must be constant. In this case the constant must be negative or
zero due to the boundary condition. In the other case we must have v > u.

5.1.16 Definition (Harmonic lifting). Let 2 ≤ n ∈ N, Ω ⊂ Rn open, u ∈
C0(Ω) subharmonic and B b Ω a ball. Define the harmonic lifting of u in B by

U(x) =

{
ū(x), x ∈ B
u(x), x ∈ Ω\B,

where ū is the harmonic extension of u|∂B .

5.1.17 Proposition. Let 2 ≤ n ∈ N, Ω ⊂ Rn open, u1, . . . , uN ∈ C0(Ω)
subharmonic and B b Ω a ball. Then there hold:
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(i) The function v = max(u1, . . . , uN ) ∈ C0(Ω) is subharmonic.

(ii) The harmonic lifting U of u in B is subharmonic.

Proof. (i): Let B′ b Ω a ball and a harmonic function h with

v|∂B′ ≤ h|∂B′ .

Then this carries over to the ui and hence

v ≤ h.

(ii): Let B′ b Ω a ball and a harmonic function h with

U|∂B′ ≤ h|∂B′ .

Since u ≤ U , we obtain
u|B′ ≤ h.

There hold
∂(B ∩B′) = (∂B ∩ B̄′) ∪ (∂B′ ∩ B̄)

and
ū|∂B′∩B̄ ≤ h, ū|∂B∩B̄′ = u|∂B∩B̄′ ≤ h.

The maximum principle implies

ū|B′ ≤ h.

Hence UB′ ≤ h.

5.1.18 Definition (Subfunctions). Let 2 ≤ n ∈ N, Ω b Rn open and ϕ ∈ R∂Ω

bounded.

(i) A subharmonic function u ∈ C0(Ω̄) is called subfunction rel ϕ, if u|∂Ω ≤ ϕ.
Denote by Sϕ the set of all subfunctions rel ϕ.

(ii) A superharmonic function u ∈ C0(Ω̄) is called superfunction rel ϕ, if
u|∂Ω ≥ ϕ.

The following theorem constructs a harmonic function on Ω.

5.1.19 Theorem (Perron). Let 2 ≤ n ∈ N, Ω b Rn open and ϕ ∈ R∂Ω

bounded. Then the function

u(x) = sup
v∈Sϕ

v(x)

is harmonic.

Proof. All v ∈ Sϕ are bounded, because

v|∂Ω ≤ sup
∂Ω

ϕ

and the latter function is harmonic. Hence u is real-valued function. Let x ∈ Ω,
then there exists a sequence of subharmonic functions (ṽn)n∈N in Sϕ with

ṽn(x)→ u(x).
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Set
vn = max(ṽn, inf ϕ).

Then also vn(x)→ u(x). Fix a ball x ∈ B b Ω and let Vn ∈ Sϕ be the harmonic
lifting of vn in B. Then

Vn(x)→ u(x)

and Vn is uniformly bounded. Due to Exercise 5.1.4 there exists a subsequence
(Vn)n∈N such that for all B′ b B

|Vn − v|0,B′ → 0,

where v is harmonic in B. There hold

v ≤ u, v(x) = u(x).

Claim: v = u in B. Otherwise there existed a point y ∈ B with v(y) < u(y)
and a function ũ ∈ Sϕ with

v(y) < ũ(y) ≤ u(y). (5.3)

Let wn = max(ũ, Vn) and Wn the corresponding harmonic liftings in B. Again,
a subsequence (Wn)n∈N converges uniformly in any B′ b B to a harmonic
function w with

v ≤ w ≤ u, v(x) = w(x) = u(x).

The maximum principle implies v = w in B, in contradiction to (5.3). Hence u
is harmonic.

To investigate, under which assumptions on the boundary ∂Ω the function
ϕ is attained continuously by the harmonic function u, we make the following
definition.

5.1.20 Definition (Barriers). Let 2 ≤ n ∈ N, Ω b Rn and ξ ∈ ∂Ω. A function
w ∈ C0(Ω̄) is called a barrier at ξ relative to Ω, if

(i) w is superharmonic

(ii) w(ξ) = 0 and w > 0 on Ω̄\{ξ}.

ξ is called regular, if there exists a barrier at ξ relative to Ω.

5.1.21 Lemma. Let 2 ≤ n ∈ N, Ω b Rn, ξ ∈ ∂Ω regular and ϕ ∈ R∂Ω

bounded, such that ϕ is continuous at ξ. Let u be the function defined in Theo-
rem 5.1.19. Then

lim
x→ξ

u(x) = ϕ(ξ).

Proof. Let ε > 0. Then there exists a constant k > 0, such that ϕ(ξ) + ε+kw is
a superfunction rel ϕ and such that ϕ(ξ)− ε− kw is a subfunction rel ϕ. Since
u is harmonic, we deduce

ϕ(ξ)− ε− kw ≤ u ≤ ϕ(ξ) + ε+ kw

and hence
|u(x)− ϕ(ξ)| ≤ ε+ kw(x).

The result follows, since w(x)→ 0 as x→ ξ.
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The following theorem is the main conclusion of Perron’s method.

5.1.22 Theorem. Let 2 ≤ n ∈ N, Ω b Rn. Then the classical Dirichlet
problem

∆u = 0 in Ω

u = ϕ on ∂Ω

is solvable in C∞(Ω) ∩ C0(Ω̄) for arbitrary ϕ ∈ C0(∂Ω) if and only if every
boundary point of ∂Ω is regular.

Proof. Given that every boundary point is regular, the solvability follows from
Lemma 5.1.21. Conversely, suppose that the problem is solvable for any given
ϕ. Let ξ ∈ ∂Ω and put

ϕ(x) = |x− ξ|.

The solution corresponding to these boundary values is a barrier at ξ.

Theoretically this is a nice result, but in practice it will only be useful if we
have a simple criterion, when a boundary point is regular. Otherwise we will
not be able to decide when the Dirichlet problem is solvable. Fortunately there
is such a criterion:

5.1.23 Proposition. Let 2 ≤ n ∈ N and Ω b Rn satisfy an exterior ball
condition at every ξ ∈ ∂Ω.2 Then every boundary point is regular.

Proof. Set

w(x) =

{
log
(
|x−y|
R

)
, n = 2

R2−n − |x− y|2−n, n ≥ 3,

where BR(y) is an exterior ball at ξ. Then w(ξ) = 0 and w(x) > 0 for all
x ∈ Ω̄\{ξ}. Furthermore w is harmonic, so that w is a barrier.

5.2 Heat equation
In this section we will obtain first classical existence results for the heat equation

∆xu− u̇ = 0. (5.4)

This is the prototype of a linear parabolic PDE. Due to the maximum principle
for parabolic equations, Theorem 2.2.2, it seems natural to consider (5.4) on
a domain Q ⊂ Rn+1 with prescribed parabolic boundary values, namely we
consider the so-called Cauchy-Dirichlet problem

∆xu− u̇ = 0 in Q
u = ϕ on ∂PQ,

where Q = (0, T ) × Ω is a cylinder with open Ω ⊂ Rn. We shall first consider
Q = Rn+1

+ ≡ {(t, x) ∈ R × Rn : t > 0}. In this special case we can define a
fundamental solution, similarly to the Laplace equation. The major source for
the first part of this section is [1].

2This means that Rn\Ω̄ satisfies an interior ball condition, compare Definition 2.2.13.
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The fundamental solution
5.2.1 Definition. Let n ∈ N. The function

Γ: (0,∞)× Rn → R

Γ(t, x) =
1

(4πt)
n
2

exp

(
−|x|

2

4t

)
is called the fundamental solution of the heat equation or also the heat kernel.

The following observation justifies the terminology.

5.2.2 Theorem. Let n ∈ N. The heat kernel Γ satisfies
ˆ
Rn

Γ(t, x) dx = 1 ∀t > 0

and
∆xΓ− Γ̇ = 0.

Proof. There holds, using the transformation of variables y = x
2
√
t
,

ˆ
Rn

Γ(t, x) dx =
1

π
n
2

ˆ
Rn
e−|y|

2

dy =
1

π
n
2

(ˆ ∞
−∞

e−x
2

dx

)n
= 1.

Moreover,

Γ̇ = − n
2t

Γ +
|x|2

4t2
Γ = ∆xΓ.

Now we are able to solve the Cauchy problem for the half space.

5.2.3 Theorem. Let ϕ ∈ C0(Rn) ∩ L∞(Rn). Then a solution to

∆xu− u̇ = 0 in Rn+1
+

u = ϕ on {0} × Rn

in C∞(Rn+1
+ ) ∩ C0(R̄n+1

+ ) is given by

u(t, x) =

ˆ
Rn

Γ(t, x− ξ)ϕ(ξ) dξ. (5.5)

Proof. Since the integral converges locally in Rn+1
+ uniformly and Γ is smooth,

differentiation under the integral is justified. Thus u is a solution of the heat
equation. We have to check the continuity at t = 0. We calculate for every
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t > 0, δ > 0 and |x− x0| < δ
2 :

|u(x, t)− ϕ(x0)| ≤
ˆ
Rn

Γ(t, x− ξ)|ϕ(ξ)− ϕ(x0)| dξ

=

ˆ
Bδ(x0)

Γ(t, x− ξ)|ϕ(ξ)− ϕ(x0)| dξ

+

ˆ
Rn\Bδ(x0)

Γ(t, x− ξ)|ϕ(ξ)− ϕ(x0)| dξ

≤ oscBδ(x0)(ϕ) + 2|ϕ|0,Rn
ˆ
Rn\Bδ(x0)

1

(4πt)
n
2
e−
|ξ−x0|

2

16t dξ

≤ oscBδ(x0)(ϕ) + cn|ϕ|0,Rn
ˆ ∞

δ
4
√
t

e−r
2

rn−1 dr < ε,

whenever δ = δ(ε) and t = t(δ) are small.

Note that the solution (5.5) is positive everywhere instantly, if the initial
datum is positive somewhere. This phenomenon is known as infinite speed of
propagation.

Now we want to solve the inhomogeneous problem, i.e.

∆xu− u̇ = f in Rn+1
+

u = 0 on {0} × Rn.
(5.6)

Motivated by Theorem 5.2.3 and the fundamental theorem of calculus, we expect
the following proposition to hold.

5.2.4 Proposition (Duhamel’s principle). Let n ∈ N and f ∈ C1;2
c ([0,∞) ×

Rn). Then the function u defined by

u(t, x) = −
ˆ t

0

ˆ
Rn

Γ(t− s, x− ξ)f(s, ξ) dsdξ

solves (5.6) and there holds u ∈ C∞((0,∞)×Rn)∩C0(R̄n+1
+ ), with u(0, x) = 0

for all x ∈ Rn.

Proof. A change of variables gives

u(t, x) = −
ˆ t

0

ˆ
Rn

Γ(τ, y)f(t− τ, x− y) dτdy.

Thus

∆xu− u̇

=

ˆ t

0

ˆ
Rn

Γ(τ, y)(∂t −∆x)f(t− τ, x− y) dτdy +

ˆ
Rn

Γ(t, y)f(0, x− y) dy

=

ˆ t

ε

ˆ
Rn

Γ(τ, y)(−∆y − ∂τ )f(t− τ, x− y) dτdy

+

ˆ ε

0

ˆ
Rn

Γ(τ, y)(∂t −∆x)f(t− τ, x− y) dτdy +

ˆ
Rn

Γ(t, y)f(0, x− y) dy

≤
ˆ
Rn

Γ(ε, y)f(t− ε, x− y) dy + εC

→ f(t, x)
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for ε→ 0, as in the proof of Theorem 5.2.3.

Combining these results gives:

5.2.5 Theorem. Let n ∈ N, f ∈ C1;2
c ([0,∞)×Rn) and ϕ ∈ C0(Rn)∩L∞(Rn).

Then the function u defined by

u(t, x) =

ˆ
Rn

Γ(t, x− ξ)ϕ(ξ) dξ −
ˆ t

0

ˆ
Rn

Γ(t− s, x− ξ)f(s, ξ) dsdξ

belongs to u ∈ C∞((0,∞)× Rn) ∩ C0(R̄n+1
+ ) and solves

∆xu− u̇ = f in Rn+1
+

u = ϕ on {0} × Rn.

The Cauchy-Dirichlet problem in domains
The following method to construct solutions to the heat equation in arbitrary
domains only relies on the elliptic L2-theory and hence is quite elegant. As
a motivation note the following fact. If Ω b Rn has a smooth boundary and
v ∈ C∞(Ω) ∩W 1,2

0 (Ω) is one of the Laplace eigenfunctions,

−∆v = λv,

then the function
u(t, x) = e−λtv(x)

is a solution to the heat equation in (0, T ) × Ω with zero Dirichlet boundary
conditions. Hence, since any L2(Ω) function u0 can be expanded as a Fourier
series,

u0 =

∞∑
i=1

〈u0, ui〉2,Ω ui,

where (ui)i∈N is the countable family of normalized Laplace-eigenfunctions cor-
responding to the eigenvalues λi, we can expect using formal3 differentiation,
that

u(t, x) =

∞∑
i=1

e−λit 〈u0, ui〉2,Ω ui

will solve the Cauchy-Dirichlet problem

∆x − u̇ = 0 in (0,∞)× Ω

u(t, ·) = 0 on ∂Ω ∀t > 0

u(0, ·) = u0.

Note that from these equations we would then obtain

∆m
x u(t, x) =

dm

dtm
u(t, x) = 0 ∀x ∈ ∂Ω ∀t > 0 ∀m ≥ 0.

3yet unjustified
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Hence, to even have a chance to make the solution u belong to the class
C∞([0, T )× Ω̄), we have to impose the compatibility condition

∆mu0|∂Ω = 0 ∀m ≥ 0.

In this section we make this plausible argument rigorous. We start with weak
initial values.

5.2.6 Theorem. Let n ∈ N, Ω b Rn with smooth boundary and u0 ∈ L2(Ω).
Let ui be an L2(Ω)-orthonormal basis in W 1,2

0 (Ω) of Laplace eigenfunctions with
eigenvalues λi. Then the function

u : (0,∞)× Ω→ R

u(t, x) =

∞∑
i=1

e−λit 〈u0, ui〉2,Ω ui(x)

is a smooth solution to the heat equation. Furthermore there holds

‖u(t, ·)− u0‖2,Ω → 0, t→ 0

and if in addition ∆m−1u0 ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) for m ≥ 1, then there also

holds
‖u(t, ·)− u0‖2m,2,Ω → 0, t→ 0.

Proof. Recall that ui ∈ C∞(Ω̄). Since the satisfy

−∆ui = λiui,

the L2-regularity theory, in particular Theorem 4.2.10, gives

‖ui‖m+2,2,Ω ≤ c(‖ui‖2,Ω + λi‖ui‖m,2,Ω)

for all large m and an induction and the Sobolev embedding theorems give

|ui|k,Ω ≤ c‖ui‖m+2,2,Ω ≤ c(1 + λm+1
i ).

We prove that the partial sums

vN =

N∑
i=1

e−λit 〈u0, ui〉2,Ω ui

form a Cauchy sequence in Ck(Ω̄) for any k ≥ 1 and give t > 0. Therefore pick
m = m(k) large enough to ensure

Wm,2(Ω) ↪→ Ck(Ω̄).
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There holds ∥∥∥∥∥
M∑
i=N

e−λit 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2

m,2,Ω

=

M∑
i=N

e−2λit| 〈u0, ui〉2,Ω |
2‖ui‖2m,2,Ω

+
∑

N≤i,j≤M

e−(λi+λj)t| 〈u0, ui〉2,Ω || 〈u0, uj〉2,Ω | 〈ui, uj〉m,2,Ω

≤
M∑
i=N

p(λi)e
−λit| 〈u0, ui〉2,Ω |

2

→ 0,

as N,M → ∞. Here p is a polynomial. The convergence is uniform on each
[ε,∞) ⊂ (0,∞).4 Hence

v =

∞∑
i=1

e−λit 〈u0, ui〉2,Ω ui ∈ C
∞(Ω̄),

the differentiation under the summation sign is justified and the first claim of
the proposition follows. For the second claim we estimate

‖u(t, ·)− u0‖2,Ω ≤

∥∥∥∥∥
N∑
i=1

(1− e−λit) 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2,Ω

+

∥∥∥∥∥
∞∑

i=N+1

(1− e−λit) 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2,Ω

.

First pick N large enough to ensure that the second term is less than a given
ε > 0. Then let t→ 0.

Now let ∆m−1u0 ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) for all m ≥ 1. First note that the

L2-estimates imply that for all functions v ∈Wm+2,2(Ω)∩W 1,2
0 (Ω) there holds

‖v‖m+2,2,Ω ≤ c(‖v‖2,Ω + ‖∆v‖m,2,Ω).

Thus for t > 0,

‖u(t, ·)− u0‖2m,2,Ω ≤ c(‖u(t, ·)− u0‖2,Ω + ‖∆(u(t, ·)− u0)‖2m−2,2,Ω)

4We have used Parseval’s inequality for orthonormal basis of Hilbert spaces, i.e. if

x =

∞∑
i=1

〈x, ui〉ui,

then
∞∑
i=1

| 〈x, ui〉 |2 <∞.
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and hence by induction

‖u(t, ·)− u0‖2m,2,Ω ≤ c
m∑
k=0

‖∆k(u(t, ·)− u0)‖2,Ω.

We estimate each term on the right hand side:

‖∆k(u(t, ·)− u0)‖2,Ω =

∥∥∥∥∥
∞∑
i=1

λki (1− e−λit) 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2,Ω

≤

∥∥∥∥∥
N∑
i=1

λki (1− e−λit) 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2,Ω

+

∥∥∥∥∥
∞∑

i=N+1

λki (1− e−λit) 〈u0, ui〉2,Ω ui

∥∥∥∥∥
2,Ω

,

which, by the same reasoning as above, converges to zero as t → 0. That the
latter term becomes small, when N approaches infinity, is due to the fact that
the Fourier series of −∆ku0 is given by

−∆ku0 =

∞∑
i=1

〈
−∆ku0, ui

〉
2,Ω

ui =

∞∑
i=1

λki 〈u0, ui〉ui,

which shows that the latter series converges in L2(Ω). The proof is complete.

5.2.7 Corollary. Let n ∈ N, Ω b Rn with smooth boundary, u0 ∈ C∞(Ω̄),
such that ∆mu0 ∈W 1,2

0 (Ω) for all m ∈ N. Let ui be an L2(Ω)-orthonormal basis
in W 1,2

0 (Ω) of Laplace eigenfunctions with eigenvalues λi. Then the function

u : Q = (0,∞)× Ω→ R

u(t, x) =

∞∑
i=1

e−λit 〈u0, ui〉2,Ω ui(x)

is the unique C∞(Q̄)-solution to the Cauchy-Dirichlet problem

∆xu− u̇ = 0 in Q
u(t, ·) = 0 on ∂Ω ∀t ≥ 0

u(0, ·) = u0.

Proof. Due to the uniform convergence of the integral in {t ≥ ε} there holds
u ∈ C∞((0,∞)×Ω̄). From the Sobolev embedding and Theorem 5.2.6 we obtain

|u(t, ·)− u0|k,Ω̄ → 0, t→ 0.

Hence all spatial derivatives of u(t, ·) can be continuously extended to Q̄. We
have to prove the same for the time derivative. There holds for all k > 0

dk

dtk
u(t, x) = ∆k

xu(t, x)→ ∆ku0(x), t→ 0

and hence u ∈ C∞(Q̄).
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Harnack inequality
The Harnack inequality for the heat equation is a little bit different that for
harmonic functions. As expected, a heat distribution will need a little bit of
time to level out along space. Hence in order to estimate the maximal heat by
the minimal heat, we have to wait for a little while. Thus all we should expect
is an estimate of the rough form

sup
Mt1

u ≤ c(t1, t2) inf
Mt2

u,

whereMti are some compact subsets of Ω at times t1 < t2. For the heat equation
such an estimate was first proven independently by Hadamard and Pini, [6, 14].
We present an elegant proof due to Li and Yau, [10], which is applicable to
many other parabolic operators, even nonlinear ones.

5.2.8 Theorem (Harnack inequality for the heat equation). Let n ∈ N, Ω b
Rn open, T > 0 and u ∈ C∞((0, T )×Ω) a positive solution of the heat equation.
Then for every ball Br(x0) b Ω and times 0 < t1 < t2 < T there exists a
constant c, such that

max
B̄r(x0)

u(t1, ·) ≤ c min
B̄r(x0)

u(t2, ·).

Proof. We will prove that the function

v = log u

satisfies the inequality
v̇ ≥ α|∇v|2 − β (5.7)

in [t1, t2]× B̄r(x0) with suitable constant α and β. From this we will conclude
the Harnack inequality as follows.

v(t2, x2)− v(t1, x1) =

ˆ 1

0

d

ds
v(st2 + (1− s)t1, sx2 + (1− s)x1) ds

=

ˆ 1

0

(v̇(t2 − t1) + 〈∇v, x2 − x1〉) ds

≥
ˆ 1

0

α|∇v|2(t2 − t1)− β(t2 − t1) + 〈∇v, x2 − x1〉 ds

≥ −c,

where c only depends on r, t2 − t1, α and β. Hence

u(t2, x2) ≥ e−cu(t1, x1).

Taking the maximum over x1 and the minimum over x2 gives the Harnack
inequality.

Hence we have to prove (5.7). v satisfies

∆xv − v̇ = −|∇v|2.

For κ > 0 to be determined later we obtain an equation for

q = ∆xv + κ|∇v|2,
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namely

∆xq − q̇ = ∆x(∆xv) + 2κ 〈∇(∆xv),∇v〉+ 2κ|∇2v|2 −∆xv̇ − 2κ 〈∇v̇,∇v〉
= 2(κ− 1) 〈∇(∆xv),∇v〉+ 2(κ− 1)|∇2v|2 − 2κ 〈∇(∆xv),∇v〉
− 2κ

〈
∇|∇v|2,∇v

〉
= −2 〈∇q,∇v〉+ 2(κ− 1)|∇2v|2.

Now let ζ be a smooth cut-off function with

ζ|∂pQ = 0, ζ|(0,T )×Ω > 0, ζ|[t1,t2]×B̄r(x0) = 1.

Set, for µ > 0,
z = ζ4q + µt

and suppose z attains a negative minimum at some interior point, at which we
firstly conclude

|∇v|2 ≤ 1

κ
|∆xv| ≤

c

κ
|∇2v|

and thus
|q| ≤ c

κ
|∇2v|,

secondly

0 =
∇z
ζ3

= 4∇ζq + ζ∇q

and thirdly, putting κ = 1
2 ,

0 ≤ ∆xz − ż
= 4ζ3∆xζq + 12ζ2|∇ζ|2q + ζ4∆xq + 4ζ3 〈∇ζ,∇q〉 − ζ4q̇ − 4ζ3ζ̇q − µ
≤ cζ3|∇2v| − 2ζ4 〈∇q,∇v〉 − ζ4|∇2v|2 + 4ζ3 〈∇ζ,∇q〉 − µ
≤ cζ3|∇2v|+ 8ζ3q 〈∇ζ,∇v〉 − ζ4|∇2v|2 + cζ2|∇2v||∇ζ|2 − µ

≤ cζ3|∇2v|+ εζ4|q||∇v|2 +
ζ2|q|
ε
|∇ζ|2 − ζ4|∇2v|2 + cζ2|∇2v||∇ζ|2 − µ

< 0

for large µ, which is a contradiction. Hence z remains non-negative and thus

v̇ − 1

2
|∇v|2 = ∆xv +

1

2
|∇v|2 = q(t, x) ≥ −µt ∀(t, x) ∈ [t1, t2]× B̄r(x0).

Hence (5.7) is established and the proof complete.

Energy methods
The uniqueness question has already been settled for the Cauchy-Dirichlet prob-
lem. Now we want to provide another proof using energy methods, which is in-
teresting by itself. Furthermore it will enable to prove a result about backwards
uniqueness.
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5.2.9 Proposition (Uniqueness revisited). Let n ∈ N, Ω b Rn with smooth
boundary, Q = (0,∞)× Ω and u ∈ C∞(Q̄) solve

∆xu− u̇ = 0 in Q
u = 0 on ∂pQ.

Then u = 0.

Proof. Along the heat flow there is a monotone quantity5, namely

e(t) =

ˆ
Ω

u(t, x)2 dx.

We have
ė(t) = 2

ˆ
Ω

u(t, x)u̇(t, x) dx

= 2

ˆ
Ω

u(t, x)∆xu(t, x) dx

= −2

ˆ
Ω

|∇u(t, x)|2 dx

≤ 0.

Hence
e(t) ≤ e(0) = 0

and u = 0.

The backwards uniqueness is more subtle.

5.2.10 Proposition (Backward uniqueness). Let n ∈ N, Ω b Rn with smooth
boundary, T > 0 Q = (0, T )× Ω and u ∈ C∞(Q̄) solve

∆xu− u̇ = 0 in Q
u(t, ·) = 0 on ∂Ω ∀t > 0

u(T, ·) = 0.

Then u = 0.

Proof. In addition to Proposition 5.2.9 we calculate

ë(t) = −4

ˆ
Ω

〈∇u(t, x),∇u̇(t, x)〉 dx

= 4

ˆ
Ω

∆xu(t, x)u̇(t, x) dx

= 4

ˆ
Ω

(∆xu(t, x))2 dx.

5Especially in more complicated problems, such as in fully nonlinear equations, the exis-
tence of a monotone quantity often opens the gates to existence and convergence results.
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Hence

ė(t)2 = 4

(ˆ
Ω

|∇u(t, x)|2 dx
)2

= 4

(ˆ
Ω

u(t, x)∆x(t, x) dx

)2

≤ 4‖u(t, ·)‖22,Ω‖∆xu(t, ·)‖22,Ω
= e(t)ë(t).

Let
τ = inf{t > 0: u(s, ·) 6≡ 0 ∀0 < s < t} ≤ T

and suppose τ > 0. This implies e(0) > 0 and ė(0) < 0. Thus f(t) = log e(t)
satisfies

f̈(t) =
ë(t)

e(t)
− ė(t)2

e(t)2
≥ 0 ∀0 < t < τ

and is hence convex. Thus

f((1− s)τ) ≤ sf(0) + (1− s)f(τ) ∀0 ≤ s ≤ 1

and
e((1− s)τ) ≤ e(0)se(τ)1−s = 0,

where we used u(τ, ·) = 0. This is a contradiction to the definition of τ .

5.3 Wave equation
In this final section we collect the most basic properties related to the wave
equation and its solutions. In order to do so, we first have a look at a first order
PDE, the transport equation. We follow Evans’ book [1] closely.

Transport equation
5.3.1 Definition. Let n ∈ N and b ∈ Rn. The PDE

u̇+ 〈b,∇u〉 = 0 (5.8)

in (0,∞)× Rn is called the transport equation.

5.3.2 Remark. Having a sharp look at (5.8), one can see that a certain direc-
tional derivative of u vanishes, namely the one in direction (t, b):

d

ds
u(t+ s, x+ sb) = u̇+ 〈∇u, b〉 = 0.

Hence the value of u is constant along the line

γ(s) = (t+ s, x+ sb)

and if we know the C1 initial function

g : Rn → R,
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we conclude by inserting s = 0 and s = −t that

u(t, x) = u(0, x− tb) = g(x− tb).

If we want to solve the inhomogeneous problem

u̇+ 〈b,∇u〉 = f,

we can proceed similarly and integrate to obtain

u(t, x)− g(x− tb) =

ˆ 0

−t

d

ds
u(t+ s, x+ sb) ds

=

ˆ 0

−t
f(t+ s, x+ sb) ds

=

ˆ t

0

f(τ, x+ (τ − t)b) dτ.

We have proved:

5.3.3 Proposition. Let n ∈ N, g ∈ C1(Rn) and f ∈ C1((0,∞)× Rn). Then
the unique C1((0,∞) × Rn)-solution to the inhomogeneous transport equation
with initial values g,

u̇+ 〈b,∇u〉 = f in (0,∞)× Rn

u = g on {0} × Rn

is given by

u(t, x) = g(x− tb) +

ˆ t

0

f(τ, x+ (τ − t)b) dτ.

The one-dimensional wave equation
We want to solve the one-dimensional wave equation on the real line, i.e.

ü− u,xx = 0 in (0,∞)× R
u = g, u̇ = h on {t = 0} × R.

Note that we have to give two initial conditions, similar to second order
ordinary differential equations. We will heuristically derive a solution. Therefore
let

v = u̇− u,x.

Then
v̇ + v,x = ü+ u,tx − u,xt − u,xx = 0.

Hence v solves a transport equation and we get

v(t, x) = a(x− t),

where a(x) = v(0, x). This implies

u̇− u,x = a(x− t),
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which is an inhomogeneous transport equation. Putting b(x) = u(0, x) we get

u(t, x) = b(x+ t) +

ˆ t

0

a(x+ (t− s)− s) ds

= b(x+ t) +
1

2

ˆ x+t

x−t
a(y) dy.

Now we insert the initial conditions:

a(x) = v(0, x) = u,t(0, x)− u,x(0, x) = h(x)− g′(x).

Inserting gives

u(t, x) = g(x+ t) +
1

2

ˆ x+t

x−t
(h(y)− g′(y) dy

=
1

2
(g(x+ t) + g(x− t)) +

1

2

ˆ x+t

x−t
h(y) dy.

We obtain

5.3.4 Theorem (D’Alembert formula). Let g ∈ C2(R), h ∈ C1(R). Then

u(t, x) =
1

2
(g(x+ t) + g(x− t)) +

1

2

ˆ x+t

x−t
h(y) dy

is a solution to the wave equation and

lim
(t,x)→(0,x0)

u(t, x) = g(x0), lim
(t,x)→(0,x0)

u̇(t, x) = h(x0).
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