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CHAPTER 1

INTRODUCTION AND BASIC
TOOLS

1.1 Simple examples

The calculations in this section aim to give the reader first intuition and some
examples. They are not always rigorous. In Section 1.2 we will start the rigorous
treatment. A more detailed introduction with many examples can be found in
[1, 16].

Heat- and Laplace equation

Let
u: (0,T) x R — [0, 00)

be twice differentiable. For each ¢ think of wu(t,-) as a hear distribution for
example in a metallic rod. We want to deduce a law for the evolution of u in
time heuristically. In an arbitrary interval (x,y) let m(¢, x,y) the total heat at
t,

m(t,x,y) = /wy u(t, z) dz.

Then
om ? Qu

T (t,z,y) = a(t,z) dz.

It seems plausible, that the total heat in (z,y) grows proportionally to the
spatial gradient at x an y,

x

aﬂ ou ou

ot (t,x,y) = @(ta y) - &(Lz)

Hence

Y Ou ou ou

and after differentiation with respect to y we get

ou 9%y
a(ﬂy) = @(t,y).



This is the one-dimensional version of the heat equation, that u has to satisfy
due to the model assumptions. This is a simple example of a partial differential
equation, an algebraic equation between the derivatives of the function u. A
more precise definition follows later. The higher dimensional version of the heat
equation for a function,

u: (0,7) x R* — [0, 00),

Oru = Au,

can be derived by a similar heuristic argument. Here A denoted the so-called
Laplace-operator

n

i=1

Hence a distribution function
@: R™ — [0,00)
that describes an equilibrium (constant heat everywhere) must satisfy
A = 0.

This is the so-called Laplace-equation and its solutions are called harmonic func-
tions. These two equations, the Laplace- and the heat equation, are the pro-
totypes of two classes of equations, that will play a major role in this course.
They belong to the so-called elliptic resp. parabolic equations.

More generally it is possible to include independent local heat sources into
our model, i.e. at some x € R™ we have a heat source of intensity f(x). The
heat evolution is then given by

Ou = Au+ f
and its equilibria are solutions of the Poisson-equation

Ai+ f=0.

Wave equation

Beside the parabolic and elliptic equations, the wave equations form a third
improtant class of partial differential equations. For example, they model a
vibrating string or membrane. The prototype has the form

D2u = Au.

Again we want to motivate this equation by a heuristic. Let I = (a,b) C R
be an arbitrary interval and let u(¢,z) be the displacement of the string with

am o

il xim Oxil ... Oxim



respect to the z-axis. The crucial model assumption is that the force F' that
acts onto the mean displacement

1 b
A:
b—a/a Y

is given by the change of displacement at the boundary points (make a sketch
to visualize the idea),

b
F = 0u(t,b) — dyu(t,a) = / 02 u(t,y) dy.
a
Newton’s law says
(b—a)dZA=F

(we assume unity mass density) and hence

b b
[ outt) dy= [ ity dy.
This holds for all intervals (a,b) and hence

OAu = 02, u.

Minimal surface equation
Until now all equations were linear, i.e. the corresponding differential operators
A, 9 —A, 04 -A

are linear maps on the space of twice differentiable functions. Now we consider
a nonlinear example, which stems from a natural geometrical problem.

Suppose, on an open and connected set 2 C R™ we have a function v €
C?(Q)?, that minimizes the surface area F(u) of its graph

G(u) ={(z,u(x)): z € Q}
within this class, given boundary values
Ujpq = $-

We use the direct method of the calculus of variations to deduce an equation for
u. Let n € C2°(2)* a test function. Since njpq = 0 and u minimizes the area,

we have
Vi e R: Fu) < Fu+tn).

2].e. u is twice continuously differentiable
37 is infinitely often differentiable and

suppn = {x € Q: n(z) #0} C Q



The surface area of the graph is given by

u) = / V14 [Vul2
Q

There holds

d (Vu, Vi) \Y
0= = F(u+tn)mo = WV gy (“) 0
Q

dt \/1 FVul? VIt [VuP

This equation holds for all text functions n and by the fundamental lemma of
the calculus of variations® there holds

. Vu
div| —]——— | =
V14 |Vul?
This is the so-called Minimal surface equation, on of the mostly studied equa-
tions of the field of geometric analysis.

1.1.1 Exercise. In case n = 1 prove that we get the expected minimizers
(what are they?).

Boundary value problems and PDE

We have seen several examples of partial differential equations and naturally
ask the question of solvability, i.e. of the ezistence of a solution. On the set
Q C R™ consider the Laplace-equation

Au = 0.
It is clear, that every affinely linear map
u(x) = Ax +b

with a linear map A: R™ — R solves this equation. Hence we have existence
in this case. However, there are many solutions. To get uniqueness, we have
to impose conditions, similar to the theory of ordinary differential equations,
where we have to impose initial values. In our situation we can for example
impose certain values of u on the boundary 02, i.e. we consider the so-called
boundary value problem
Au=0 1in
u=¢ on Jf.

A boundary value problem is also called Dirichlet-problem, if we prescribe the
values of the solution on the boundary. Alternatively we can prescribe the
normal derivatives,

Au=0 in
ou
5—1/1 on 0f)

4Partial integration, details later
5Details later



and then we call this problem Neumann-problem. Soon we will be able to show,
that these problems possess unique solutions for certain ¢ and .

For this purpose we will use Hilbert space methods. The essence of the idea
is to view the Laplace-operator as a linear operator between suitable Hilbert
spaces of weakly differentiable functions®, which satisfies the assumptions of
the Riesz representation theorem. These Hilbert spaces are so big, that it is
relatively easy to find a solution. However, the spaces a re so big, that it is even
not clear, if these generalized solutions are differentiable in the classical sense.
This question will then be investigated within the regularity theory.

Now we give a definition and a broad classification of partial differential
equations.

1.1.2 Definition. (i) Let n > 1 and © C R™ be open and

F:WCR" xR ' x...xR"xRx Q>R
a map on an open set W. An equation of the form
F(DFu(z), D*"Yu(x),..., Du(z),u(z),z)" =0, z€Q, (1.1)
is called partial differential equation (PDE) of k-th order.
(ii

(iii

1.1) is called quasilinear, if F' is affinely linear in the first variable.

(iv) (1.1) is called linear, if F is affinely linear in the first k& 4+ 1 variables.

(v

) (

) (1.1) is called semilinear, if 9F/0a’ " only depends on x € (.

) (

) If (1.1) does not belong to one of the above categories, it is often called
fully nonlinear.

1.1.3 Remark. (1.1) is to be understood symbolically. Of course it is not clear
yet, if this equation admits a k-times differentiable solution.

1.1.4 Exercise. Determine for the Poisson-equation, the heat equation, the
wave equation and the minimal surface equation the defining F' and the correct
equation type (linear, semilinear etc.).

In this course we will restrict our attention to equations of second oder.
This is more or less a matter of taste, whereas they certainly belong to the most
important and best understood equations.

1.2 Prerequisites

In this section we collect several elementary facts about function spaces, which
we basically consider to be known. This section is dynamic throughout the
semester und will be updated according to our needs.

The necessary prerequisites which we assume to be known are the obliga-
tory lectures Analysis I+1I, in particular multivariable calculus and the most

6 Sobolev-spaces
7Dk is the vector of all ordered k-th partial derivatives of w.



important existence theorems (inverse and implicit function theorem) and the
most important elements of measure theory, such as the Lebesgue integral and
LP-spaces. Some of these things can be repeated during the exercises. As we
have already done at some points, we will from time to time fix some notation
and terminology from the Analysis courses in the footnotes, in case of possible
ambiguities.

In the rest of this section we collect some important structures and spaces
which will be used throughout this course.

General notation

(i) For the number systems we use the following notation:

- R the real numbers
- C the complex numbers
- N the positive integers

- Ny the non-negative integers.

(ii) The notion of a multiindex simplifies notation of partial derivatives a lot.
A multiindex is simply an n-tuple of nonnegative integers

a=(ag,...,an).
Its length is

(o) = Zai.

For a vector x € R™ we define

n
% = H(:Ei)ai
i=1
and similarly the a-th partial derivative of an (a)-times continuously dif-

ferentiable function u is defined by

oty
A(xh)r ... 9(zm)on”

Oau =

Structures
1.2.1 Definition. (i) A pair (M, d) with a set M and a map
d: M x M = [0, 00)
is called metric space, if for all x,y, z € M there hold:
(a) d(z,y) =0 < =z=y
(b) d(z,y) = d(y, =)
(¢) d(z,y) < d(x,2) +d(z,y)

(ii) (M,d) is called complete, if every Cauchy sequence converges to a limit
reM.



The concepts of convergence, Cauchy-sequence, completeness and bounded-
ness in metric spaces should be clear according to your knowledge about R"™
and will be assumed to be known. A good source to repeat these things are the
lecture notes to Analysis by Prof. Kuwert, [9]. In the following K always stands
for R or C.

1.2.2 Definition. (i) A pair (E, || - ||) with a K-vector space F and a map
[ -1I: E—[0,00)
is called normed vector space, if for all z,y € E and all A € K there hold:

(@) ]| =0 < z=0
(b) [[Az]l = [Alll]
(© llz+yll <l + llyll

(ii) E is called Banach space, if it is complete as a metric space (with the
induced metric d(z,y) = ||l — yl|).

1.2.3 Definition. (i) A pair (E,g) with a K-vector space and a map
g: ExE—K

is called inner product space, if for all z,y,z € E and all A\, u € K there
hold:

(a) g(z,y) = 9(y, )
(b) 9z + py, 2) = Ag(, 2) + pg(y, 2)
(¢) g(xz,z) > 0and (g9(z,z) =0 < x=0)

(ii) E is called Hilbert space, if E is a Banach space with respect to the induced
norm

I-llg = Vg(s )
1.2.4 Notation. (i) The symbol (-, -) will always denote the Euclidean stan-
dard inner product of K",

n
(w,y) = 'y
=1

(ii) We stipulate € to always represent an open set of R”, n > 1, equipped
with the standard Euclidean inner product and the Lebesgue measure £".

(iii) Open sets €, are defined to be related by the symbol
Q' e,
if and only if the closure of € is compact and contained in 2.
(iv) An open ball of radius r > 0 around a point € R™ is denoted by
By(z) ={y eR": [y —=z| <r}

and an open and connected subset of R" is called domain.



(v) The symbol | - | always denoted the norm induced by (-,) on K",

In both cases we do not fix the dimension n within the notation.

1.2.5 Notation (Einsteins summation convention). We use Albert Einsteins
sitmplification (!!!), that in product expressions we sum over the same indices, if
they appear precisely once as superscript and subscript. The range of summation
is always the maximal possible range. For example take z = (z%),y = (y') € R,
then

n
(w,y) = a'y' =da'y, (1.2)
=1

1, i=j

dij = o

0, i7]
is called Kronecker-delta. Note that in the middle expression in (1.2) the sum-
mation sign is necessary, since both indices ¢ are superscripts. The summation
convention says, that in the expression on the right hand side of (1.2) we have

to sum over ¢ and j. Especially when using multilinear maps this leads to a
notational simplification, e.g. in a term of the form

where

Qiy .. iV vk,

where we have to sum over all indices i1, ..., ix.

Function spaces

1.2.6 Definition. Let X be a set and V be a K-vector space. The we define
by VX the vector space® of all maps

u: X — V.

1.2.7 Remark (C*-spaces). Let n,m € N, Q C R™ be open and k € Ny.

(i) By C*(Q,R™) we denote the vector space of all k-times continuously dif-
ferentiable functions
u: @ — R™,

where for K = 0 we mean the space of continuous functions.

(ii) By C*(©,R™) we denote the vector space of all functions u € C*(2, R™)
such that u and all its derivatives up to order k£ can be extended to )
continuously. We also write

cr(Q) = C*(Q,R), CkQ):=C*(,R).

8(u+ Av)(x) := u(x) + \v(z)



If Q is bounded and k < oo, then C*(Q) equipped with the norm
k .
[ulk0 = Z sup |D"u(x)]
i=0 TEQ
is a Banach space.

1.2.8 Exercise. Prove that C*(Q) is a Banach space for all & < oo and
bounded (2.

1.2.9 Remark (L?-spaces). Let n,m € N, Q C R" open and 1 < p < oo.

(i) By LP(Q,R™) we denote the vector space of equvialence classes of mea-
surable functions u: 0 — R™ which are p-integrable in case p < oo, i.e.

1
P
lp.o = </ |u|p> < 00,
Q

or which are essentially bounded in case p = oo, i.e.

[Ju

|u]|co,0 = inf{c > 0: L"({zx € Q: |u(x)| > ¢}) = 0},

with the equivalence
u~v & LM({xeQ:ulz) #ov(x)}) =0.

The spaces (LP(€2,R™), || - ||p,n) are Banach spaces for all 1 < p < co. We
also write
LP(Q) := LP(Q, R).

If w is a function representing an element of an equivalence class in LP(£2),
we will also use the symbol u to denote the whole equivalence class. This
simplifies notation, but one should keep in mind, that the pointwise eval-
uation map at a point z,

u— u(x)

is not well defined.

(ii) The most important estimate in this context is Holder’s inequality, which
states that for 1 < p; < oo, 1 <i < k, with

1

bi

Mw

=1

there holds

Vu; € LP(Q): / [T < I Iillp. o
Qi1 i=1
(iii) Let 0 < £L™(Q) < co. Then for every measurable function u: 2 — R there

hold for all 1 < p < g <

(@) flullpo < L£m(Q)7 7 ul

(b) limpoo [[ullp.0 = [ullc.0-

q,82-



(iv) We also define the local LP spaces (which are not normed spaces).

LP

loc

Q) ={uecR ueLP(Q) VU el

(v) For p =2, L?(Q) is a Hilbert space with the inner product

<u,v>2’Q:/uv.
Q

Different “levels” of continuity and differentiability are encoded in the fol-
lowing function spaces, which are called Hélder spaces. These play a crucial role
in the solvability theory of PDE.

1.2.10 Remark (C*“-spaces). Let n,m,k € N, Q C R" open, 7y € 2,0 < a <
1 and u:  — R™.

(i) w is called locally in Q Hélder continuous with exponent «, if for every

Qe
oo =  sup MO U@
sy oty 1T —Y|*

The space of such functions is denoted by C%*(Q,R™).

(ii) w is called Holder continuous in Q with exponent «, if

[ula,0 = sup lule) ~uly)| _

eyeQarty [T —yl*
The space of such functions is denoted by C%<(Q, R™).
(iii) We also define
CF(Q,R™) == {u € C¥(Q,R™): up € CO(Q,R™) V(B) = k}
and

CF(Q,R™) := {u € C*(Q,R™): u g € COY(Q,R™) V(B) = k}.

(iv) For k € Ny, on C**(Q,R™) we define the following norm:

= + ma .
[ulk o0 = |ulko + max [uplao

(v) We write
che(Q) = CH*(Q,R), CPY(Q) =CP(Q,R)
and also define
CPO(Q,R™) := C*(Q,R™), C*Y(Q,R™):=CHQ,R™)

(vi) For a = 1 the Holder continuous functions with exponent « are also called
Lipschitz continuous.

1.2.11 Exercise. Let Q € R™. Prove that C*%(Q) is a Banach space for all
keNpand 0 < o < 1.

10



1.3 Domains in Euclidean space

Straightening the boundary

We have already seen, that the unique solvability of a PDE in a bounded domain
Q C R™, e.g. of the Laplace equation

Au =0,

usually requires the prescription of boundary values, e.g. ujpo = . Then a
central question in the theory of PDE is, how regular a solution u will be and
if one can estimate its derivatives. These a priori estimates are then a useful
tool in solving the existence problem. For example, if ¢ is smooth?, we would
expect

u € C(Q).

In order to prove this we need estimates of all derivatives up to the boundary
0f). Since such boundaries can have a very complicated curved structure, the
straightening of the boundary is a useful tool. Basically this is a very special
coordinate system.

1.3.1 Definition (Coordinate system). Let n > 1, & C R™ open and k > 1.
A coordinate system of class C* is a C*-diffeomorphism'”

P Q= () C R

For z €  we call the components () of 1(z) = (Z'(x))1<i<n the Z-coordinates
of x.

1.3.2 Definition (C*-boundary). Let n > 1, Q C R" a domain and k > 1.

(i) We say that, Q has a C*-boundary, 0Q € C*, if for every xzo € 052 there
exists a ball B,(zg) and a C*-coordinate system

¥ Br(wo) = ¥(Br(20)),
such that
P(xo) =0, (92N By (x0)) = {Z" = 0} N (B (x0)),
(20 By (x0)) = {2" > 0} N¢p(By(w0))-
(ii) The tangent space in zg € 0N is then defined by
T (092) = DY~ (0)(R"™" x {0}).
(iii) We define the outer normal v(xg) to 0 in z¢ by the properties

v(zo) L Ty, (09Q), |v(xo)| =1, FeV0<t<e:mxg+tr(zg) ¢ Q.

9differentiable infinitely often
104 is invertible and ¢,¢~1 € C*.

11



1.3.8 Remark. (i) From the definition of ¢ und v we obtain
(DY(zo)v (o), €n) < 0.

By composing i with the linear map defined by

€; v =e; 1<i<n-1
A — 19 19 — —
) {—6m v = Dip(zo)v(z0)

we may suppose without loss of generality that
Dip(zo)v(zo) = —en.
(ii) By restricting 1 to a smaller ball, we may also suppose that the C*-norm

of all component functions of 1 and ¥ ~! are bounded.

1.3.4 Exercise. Prove that the tangent space Ty, (9€) does not depend on
the choice of the diffeomorphism v around z(, which straightens the boundary.

The following example should be known from the analysis courses.
1.3.5 Exercise. Use polar coordinates to straighten the boundary of
Q= B;(0) C R?
locally around a point (zg, yo) with g > 0, i.e. find a suitable 7). Calculate the
tangent space T4, ,,)(0B1(0)) and the corresponding outer normal.

In order to reduce global properties (such in whole of ) to local ones (such
in domains with a straightened boundary), the partition of unity is a useful tool.
Before we can prove this theorem, we need the following lemma.

1.3.6 Lemma. Letzy € R™ and r > 0. Then there exists a function

0 < ¢ € CX(Bsr(w0))

satisfying
(1B (wo) = 1
Proof. The function
1
e"t, t>0
t) =
R E

is smooth. The function

(o)

() = ; (2 B |x7rl’o|> ny (\de - 1)

has the desired properties.

12



1.3.7 Theorem (Finite partition of unity for compact sets). Let n € N and
K C R"™ be compact. Let Vj, j € N, be an open cover of K,

o0
KclJv.
j=1
Then there exist maps n; € C°(R™), 1 < i < m, such that for all i there exists
7 with
suppn; C Vj,

Zm(:r) =1 VzelkK,
i=1

and
0<my <1

Proof. Let x € K, then x € Vj for some j. Since Vj is open, there exists a ball
B3rw (.’13) with
x € Bz, () CVj.

Hence

Kc | B (x)

zeK

and by compactness we can cover K with finitely many of these balls,

KcC 6 By, (2;) =: U.
=1

For every i set (; to be the function from Lemma 1.3.6. For x € U define

Gi(z)
ni(z) = =m :
ST )
From x € U we deduce x € By for some k and hence (x(x) = 1. Thus the

denominator is positive and 7; smooth in U. The three desired properties are
obvious. O

Later we will need a version for open sets.

1.3.8 Theorem (Partition of unity for open sets). Letn € N and Q C R™ be
open. Let (Uj)jen be a covering of Q such that

Vi eN: U; € Q.

Then there exist maps n; € C°(R™), ¢ € N, such that for all i there exists j
with
supp7; C Uj,
Zm(m) =1 VzeQ,
1€N
and
0<mn <1

13



Proof. First we have to modify the open cover (U;) suitably. Set
Va=W=0, i=U

and inductively suppose that Vj is already constructed for a given k € N. Pick
an integer Ny, such that

Ny,
Vi. C U Uj =: Viy1.

j=1

Furthermore we may take Ny4; > N in each step. Hence we have produced
an open covering (Vi)ren of Q with

Vk € N: Vk C Vk-',-l-

However, we still need to ensure that every point z € € lies in only finitely
many of the covering open sets. Thus we define for k € Ny

Wy = Vk+2\vk.

For x € 0 there exists a minimal k € N with z € V}, C Vi+1 and hence

S Wk,,]_.

Thus -
Q=Jm

k=0

and every closed ball B,(x) C € intersects only finitely many of the Wj. Now
we construct the partition of unity. Let

HAS Wk C Vk+3\‘7]€,1,
then x € Uj for some j and there exists r, such that
By, () C Uj N Vi3\Vi-1. (1.3)

Thus for finitely many x; € W), there holds

Ly

Wi c | Br (a).
=1

Collecting these balls for each k, we get a countable collection of balls B, (z;)
with Ba,, (x;) € Q. For every i set (; to be the function from Lemma 1.3.6 and
for z € Q define

Gi(x)

O g
> k=1 Sk (T)

This is well-defined, since in the denominator the sum is always finite, due to

(1.3). The proof is complete. O

14



The surface measure

1.3.9 Definition. Let n > 1, Q C R™ open and
Y= (3):Q =V :=9(Q)

be a C''-coordinate system. On V we define the Gramian matriz associated to
¥, 9= (9ij)1<i,j<n, DY

9(z) = (Dy~!(2))" Dy~ (2) (1.4)

with the components

(@) = (S @, 5@ ).

With the help of the Gramian matrix we can define the surface measure on
0f). However we first have to define which sets are measurable.

1.3.10 Definition. Let n > 1 and © C R” open with C''-boundary. We call
E C 09 measurable, if

pras 1 (B(E N By(0))) € pras (R x {0))

is measurable with respect to the (n — 1)-dimensional Lebesgue measure for
every local straightening function ¢ around zy € 0f). Here

prg.: R" — R"!
(... ™) = (b, ..., 2" ).
1.83.11 Remark. (i) Since ¢ is bijective, 1 interchanges with all set operations
and hence the set of measurable sets A forms a o-algebra on 0f2.

(i) Let E C 99 be open'!, then E € A, since for all 1) we have
Y(E N By(20)) = (U NN By(0)) = (U N B,(z0)) NR™™ ! x {0}.

The projection of the latter set is open in R”~! and hence Lebesgue mea-
surable.

1.3.12 Theorem (Surface measure). Letn > 1 and Q C R™ a bounded domain
with C'-boundary. There exists a uniquely determined measure p on 05), such
that for all A-measurable sets E C 0X), that lie in the domain of definition
B,.(x0) of a local straightening function 1, there holds

u(E) = /wum Vdet gag dL" Y, (1.5)

where gaq is the Gramian matriz associated to ¥|po 12, We call p the surface

measure on OS).

11je. there exists an open set U C R™ with E = U N 0N
12This one is defined by the formula (1.4), where we replace 1) by Vo0
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Proof. (i) Let E € A, E C B,(z0) and ¥ € C*(B,(2¢),%(Br(x0))) be a local
straightening function. We define p(F) by the formula (1.5). Then p(FE) is
well defined, since (F) is Lebesgue measurable, v/det gaq is bounded and for
another straightening function

(2") = ¢: Br(yo) — ¢(Br(yo))

with Gramian matrix i = hpq associated to ¢jpn there hold (for better read-
ability we omit the arguments here):

h= (D¢ ")'Dyp~" = (D~ oD(pog™ ") (DY~ oD(og™ "))
=D(pog¢ ) o (DY) oDy~ o D(og™),

det h(&) = det(D (¢ 0 ¢~ 1)(2)) det g(v 0 ¢~ (2)),

where g = gy, and hence

/ \/deth:/ Vdet g |det(D(1o ¢~ 1)) :/ Vdet g
#(E) H(E) W(E)

due to the transformation theorem.
(ii) Since 9 is compact, there exist finitely many local straightening func-
tions

Vi By = qu(xl)%wl(Bl% 1<i<N,

with
N
=1
Put
i—1
Wy =B1noQ, W;=(Bino)\ Wi
k=1

The W; C B; are disjoint, measurable and cover 0f). Let E € A be arbitrary,
then

N
E=JEnw).

Hence, if a measure p with the desired property exists, it can only have the form

1=

N N
w(E) =Zu(EﬂWi) :Z/ v det g7,

which proves the uniqueness.
(iii) We see immediately, that by this formula a measure is defined and that
it has the desired property due to the calculation in (i). O

1.3.13 Corollary (Surface integral). Letn > 1 and Q a bounded domain with
C'-boundary. Let 1 be a local straightening function on B = B,.(xq) and

f:00 =R
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A-measurable'® and f(x) = 0 for all x ¢ 02N B. Then f is u-integrable’* if
and only if foyp~1\/det gaq is integrable with respect to the (n—1)-dimensional
Lebesgue-measure and there holds

/ fdu:/ fopty/det gon dL™ .
a0 $(OQNB)

Proof. Let E € A with E C B and for the moment f = yg'°. Due to (1.5)
there holds

/ xe = pu(E) = / Vdet goo = / xe o ¥~/ det gaq.
o0 P(E) ¥(

90N B)

Hence the result holds for characteristic functions. Due to the linearty of the
integral it also holds for all step functions. With the theorem of monotone
convergence (Beppo-Levi) the result holds for all nonnegative functions and by
decomposition into positive and negative part for all measurable functions. [

1.4 The Gaussian divergence theorem

In this section we prove the Gaussian divergence theorem. We will only do this
for domains with C2-boundary. With a little more effort one can also prove
it for C'-boundaries and with even more effort one can prove it for Lipschitz
boundaries. First we need definition.

1.4.1 Definition (Vector field). Let n > 1 and 2 C R™ be open.

(i) A map
X € CF(Q,R™)

is called vector field of class C*.

(ii) Let 1 be a Cl-coordinate system and X a C'-vector field on €. Then

X(¥(x)) = D) X ()
is called the image vector field of X under D1.

1.4.2 Definition (Divergence). Let n > 1, € C R™ be open and X €
C1(Q,R") a vector field. We define the divergence of X by

0X!

oxt’
1.4.3 Lemma. (i) Let € > 0 and let g = g(t), t € (—e,€), be a one-

parameter family of invertible (n x n)-matrices, which is differentiable with
respect to t. Then

(9 det g) 1= = det g(0) tr (97(0) 0 §(0)) (L6)

divX =

Ble. f~1(V) € A for all open V C R
ifag |f| dp < oo

(@) 1, z€E,
xr) =
XE 0, z¢E.
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(ii) In an arbitrary C?-coordinate system 1 = (Z') the divergence is given by

(M X’) (1.7)

(divX) oy

\/det oxt

where g is the Gramian matriz associated to 1) and X is the image vector
field of X under D.

Proof. (i) First suppose that ¢g(0) = id. Write

detg = Z H(Sgn ) Gir (i)

T i=1
Then
Oy detg = Z sgn 7T Zglﬂ gm’( *Inw(n)-

Since ¢g(0) = id, such a product term is only nonzero if 7 is the identity permu-
tation. Hence
(0 det g)jy—o = tr g(0)

and the results holds in this special case. In the general case apply the special
case to the function

(ii) We also write

The components of X are given by

= OT (@)X (@)

Hence B
OX _ o ont 0w oxtod
oxt  Oxkox! 0zt Oxk Ozt Ozt

0% o1
= 92kl 0

—XFrdivXoyh
From (i) we obtain

i o o, 0% o,
\/Wa (\/?X) 29 8~-9qu +3xk8x16~X +divXoqy!

0%zt 9z 0%zt 9z™

=" ———— -
AxmOTt 0T 0z 0z™ O
+divX oyt
=divX oy,
since s —m
g5, 2% 0z  Ox 7
074 Ozl
which can be seen by testing these linear maps on all basis vectors dz!/9077.

O
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The Gaussian divergence theorem is a generalization of the fundamental
theorem of calculus and reads as follows.

1.4.4 Theorem (Gaussian divergence theorem). Letn > 1 and Q C R" a
bounded domain with C%-boundary and outer normal v. Let X € C1(Q,R") be
a vector field. Then there holds

/divX: (X, V).
Q o0

Proof. First assume supp X to be contained in the domain of definition B of a
straightening function 1. Then

/divX:/ div X (¢4 (2))\/det g(Z) di
Q P(QNB)
_ /{ O (Vacta@® @) da

zn>0} oz
0 — o\
= /{~n>0} 55 (\/detg(x)X ) dz

=— X"(&h, ..., 2" 0)/det g(£1, ..., 2"1,0) dit - - dz" !
Rn—1

= / . g(—en, X)/det goo
-

:/39<X,V>.

We used here that

LR A
g’L'fLi 8.’%1 bl a.%,n - mn

and hence R 5
det g = det ggq, X" =g(en,X).

Now let X be arbitrary and (B;)1<i<n = (Br,(2i))1<i<n a family of balls that
cover 0f) and such that Bs,,(x;) are the domains of straightening functions.

Also cover
N K
aysc U B
i=1 j=N+1

by balls (Bi)N+1§i§K7 such that
Bi NoN = 0.

Let n; be an associated partition of unity according to Theorem 1.3.7. Then

/QdiVX:i_il/QdiV(niX):é/KldiV(niX):i_il/[jQ <77iX,u>:/aQ (X, v).

We also used, that for a vector field Y € C}() we always have

/ divY =0,
Q

which follows from Fubini’s theorem and the fundamental theorem of calculus.
O
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From the divergence theorem we will deduce some more useful formulas.

1.4.5 Definition (Gradient and Laplace). Let n > 1 and  C R"™ open.

(i) If u € C1(Q), then we define the gradient of u in x € Q, Vu(x) € R, by
the property
Du(x)X = (Vu(z), X) VX eR".

Vu has the components

i i Ou
VU:(;]@

(ii) We define the Laplace-operator by

A: C*Q) — C(Q)
u— Ay = div(Vu).

We obtain immediately:

1.4.6 Exercise. Let n > 1, @ C R™ a bounded domain with C?-boundary
and outer normal v. Let u € C*(Q) and v € C1(Q). Then

(i) (Partial integration)

/u@zwz—/aﬂuv—&—/ wort.
Q Q Q

If u € C?(Q), additionally there hold

/Au:/ (Vu,v)
Q a9
(iii) (2. Green’s formula)

/QvAu:f/Q<Vv,Vu>+/(mv<Vu,y>.

We want to represent A in a different coordinate system. Therefore we need
a representation of the image vector field of the gradient under a coordinate
transformation:

(ii) (1. Green’s formula)

1.4.7 Lemma. Letn >1,Q C R" open and ¢ = (') a C'-coordinate system.
Then there holds

01" _imp Ouoy™h) o
%kv u(z) = ¢"™ () am = V'u,

where (") is the inverse of the Gramian matriz (g;;) associated to 1.
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Proof. Let X € R™ and X be its image vector under D). We calculate

a,(/)—l ima(uow_l) _ 8¢_1 ima(uow_l) 8¢_1 "
<aa~ci e ) =\ ow oEm 0w

_ ima(uow_l) " J
= Gi;9 o7 X
_ 8(“‘371}71))@'

oI
_ Du 0o 0%
T Qak OF ™
_ﬂ k
T Qak
= (Vu(x), X).

m

This holds for all X € R™ and hence the claim follows. O

1.4.8 Exercise. Let Q = {(z,y) € R?: z > 0}. Write the Laplace-operator in
polar coordinates

(r,0) =v: Q= Q.

This means that you have to find a differential operator L in ) (which involves
0/0r and 0/06), such that

(Au)orp™' = L(uoyp™r).
Hint: Use (1.7).
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CHAPTER 2

THE MAXIMUM PRINCIPLE

The maximum principle is certainly one of the most important tools in the
theory of partial differential equations and in whole analysis. In its very simplest
form it appears in the scope of a well known fact:

A real function f: (a,b) — R which satisfies f"” > 0 does not attain any local
MaATIMUmM.

The inequality f” > 0 is a very simple differential inequality. This chapter
is devoted to investigate to some extent, if such a result also holds for more
complicated differential inequalities for functions of several variables, which also
include certain combinations of partial derivatives. Finally such a result will
hold for certain classes of PDE.

2.1 Linear elliptic and parabolic operators

In this section we define the class of equations, for which we will prove a max-
imum principle. These results will only be prototypes in the sense that in the
literature there are more general versions, but to get a first impression the equa-
tions treated here will be general enough. The first type of equations are the
so-called elliptic ones. We have already seen the Laplace-operator as our first
elliptic operator. As already mentioned, we restrict to operators of second order
acting on real valued functions u.

2.1.1 Definition. Let n > 1 and 2 C R" open.
(i) A linear map L of the form
L: C*(Q) - R®
Lu = a"uj + b'u; + du,’
where (a/) € (R"z)glis symmetric, (b') € (R™) and d € R%, is called
elliptic in x € Q, if ¥ (x) is positive definite, i.e.

IN(z) >0 V(&) €R™: a¥(2)65 > A=)

IWe try to keep notation as slim as possible, with as few symbols as possible. Hence
from now on we use the convention, that indices appearing after a comma denote partial
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L is called linear elliptic operator in €, if L is elliptic at every x € Q.

(ii) Let S C Q. L is called strictly elliptic in S, if

IN>0Vz € SV(&) € R™: a ()& > NP (2.1)

and uniformly elliptic in S, if

JA>A>0Vr e SV(E) € R : NP < a(x)&€& < AJE)°. (2.2)

The major, classical source for the theory of elliptic partial differential equa-
tions of second order is the excellent book by David Gilbarg and Neil Trudinger,
[5]. Most of the proofs in this chapter are more or less taken from this book.

In the following we calculate how a linear partial differential operator of sec-
ond order transforms under a change of coordinates, also compare Exercise 1.4.8.

2.1.2 Proposition. Letn > 1, Q C R™ open, L a differential operator of the
form - ‘
Lu = aYu g + bu; + du

and )
Y =(3):Q—=Q

a C?-coordinate transformation, then there holds for all u € C*(Q), that
L{uop™) = (Lu)o ™",

with a differential operator

where

and

Proof. Let @i: Q — R be defined by @(Z) = uo¢~'. Hence u(z) = a(z(z)). We
calculate
Ui = ’LNL,]C,Z’Z-,

~ k=l ~ kK
Uij = U RIT ;T + U kT ;5

and hence - )
Lu=a"u;; +b'u; + du

= a0 ihE 5 + Vi, + bt + du.

The result follows. O

derivatives, e.g.

ou 82%u Oa;

U4 = T Uij = Z a - Q4.5 = -

oxt’ 7 Baifri’ 7 i

etc. This is also well suitable for use of the summation convention.
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Hence under a coordinate transformation such a differential operator is trans-
formed to one of the same kind. If the derivatives of the coordinate transforma-
tion are under control, even the types (strictly, uniformly) elliptic carry over, as
you can convince yourself in the next exercise.

2.1.3 Exercise. Suppose the C?-coordinate transformation
P =(7): 0= Q

and its inverse 1) ! both have bounded derivatives up to second order in a subset
S C Q, then L is (strictly) [uniformly] elliptic in S if and only if L is (strictly)
[uniformly] elliptic in S = ¥(S).

Now we define the parabolic operators, a special case of which already ap-
peared in the heat equation. It has the special property that it contains a
certain differential of first order in one direction. We distinguish this direction
by splitting the domain and considering it to be a cartesian product (0,7") x €,
where 2 C R" is open.

2.1.4 Definition. Let n > 1, Q@ C R™ be open, T' > 0 a real number and
Q=1(0,T) x Q.

(i) A linear map P of the form
P: C'?(Q) - RY

Pu=a"u; +bu,; + du—1,”

where (a) € (R"")@ is symmetric, (b°) € (R")Q and d € R?, is called
parabolic in (t,x) € Q, if a¥(t,z) is positive definite. P is called linear
parabolic operator in @, if P is parabolic at every (¢, z) € Q.

(ii) Let S C Q. P is called strictly (uniformly) parabolic in S, if the relation
eq. (2.1) (eq. (2.2)) holds with z replaced by (¢, x).

Parabolic equations are often used to model real world phenomena, such as
the flow of heat in a material, as we have already seen. Hence this is a very
important class of equations. Standard textbooks which cover some theory of
these equations are [2, 11].

2.2 Maximum principles

Weak maximum principles

In this section we prove a® maximum principle for linear elliptic and parabolic

operators. We start with the weak maximum principle, which roughly states
that solutions to certain PDE will attain their global maximum on the boundary
of the given domain.

First we need a definition.

2C12(Q) is the space of functions which are once continuously differentiable with respect
to t and twice with respect to . Then we write & = dyu.
3We use ’a’ and not ’the’, because we will not prove it in the most general possible form.
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2.2.1 Definition. Letn > 1, Q C R™*! aset of the form Q = (0,7) x Q with
T > 0 and Q C R™ open. The parabolic boundary 0,Q of Q is defined by

9,Q = ({0} x Q) U ([0,T] x 09).

2.2.2 Theorem (Parabolic weak maximum principle). Letn > 1, Q C R"
open and bounded, T > 0 a real number and @ = (0,T) x Q. Let

P’LL = aijuﬂj + biuﬂ- + du — U

be a linear parabolic operator in Q with d < 0. Suppose u € C12(Q) N C°(Q)
solves the inequality
Pu > 0.

Then

P

maxu < max [ 0,maxu | .
Q 0,

2.2.3 Remark. The statement of the weak maximum principle can be rephrased
by saying that under the given assumptions, if u attains a positive maximum,
this maximum is attained on the parabolic boundary.

Proof of Theorem 2.2.2. This proof is taken from [8]. For (¢,z) € [0,T) x Q
define .
t,z) = u(t,z) — ——
ot ) = ult, ) ~

where € > 0. v satisfies in @:

ed €
Pv = Pu— .
V= S T T e

(2.3)

We first show that v attains positive maxima on the parabolic boundary. If
there was a point

(thxO) € Q\apQ
with
v(to, o) = maxwv,
Q
then first of all ¢ty < T, hence (to,z0) €  and we may conclude

0(to, z0) = v,i(to, x0) =0

and D2v(tg, z) is non-positive definit. Since (a%(tg, o)) is positive definite, we
have -
a* (to, x0)v,i5(to, To) < 0.*

Hence
Pu(to, zo) < dv(to, o) < 0.

However we have by (2.3):
P’U(to,l’o) > Oa

4This is an exercise in linear algebra, which is recommended to be worked out.
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a contradiction. Thus for all (¢t,z) € [0,T) x Q and all € > 0 we have

u(t,x) — TLt < max <0, ) Qn\l{ax - v> < max (O,rgaxu) .
P t= P

Letting € — 0 gives the result. O

2.2.4 Remark. The case where d does not have a sign will be discussed in the
exercises.

From the weak maximum principle we immediately obtain a uniqueness re-
sult for solutions of parabolic equations.

2.2.5 Corollary.  Under the assumptions of Theorem 2.2.2 suppose that u,w €
CH2(Q) N C°(Q) satisfy
Pu=Pw in Q

u=w on Q.

Then u = w.

Proof. Apply Theorem 2.2.2 to £(u — w) to obtain

max |u —w| < 0.
Q

A maximum principle for elliptic equations is also valid. We follow [5].

2.2.6 Theorem (Elliptic weak maximum principle). Let n > 1, Q@ C R™ be
open and bounded and - 4
Lu=a"u;; +bu; +du

be a linear elliptic operator in Q) with d <0,
Vo € Q IN(z) > 0 V(&) € R™: @ (2)&:& > M) [¢[?
and bounded A\7|b|. Suppose u € C?() N C°(Q) solves the inequality
Lu > 0.
Then

maxu < max | 0,maxu | .
Q 29)

Proof. Define for v > 0
1
z(x) =" .

Then
(L—d)z=~%a' 2 +~b'2 >0

for sufficiently large . Defne for ¢ > 0
v(z) = u(z) + ez(x).

Then
(L—dv=(L—d)(u+ez)>—du>0
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on the set @ = {z € Q: u(x) > 0}. Thus v does not attain positive local
maxima in €', since at such points

(L —d)v=a"v;; +bwv,; <0.
Thus

supv < max (0, max v)
o o
and hence for all 2 € €’ there holds

u(z) < max (O7 max(u + ez)) < max (0, max(u + €z) + € max z) .
o E19) Q

This holds for all € > 0 and hence the result follows. O
As in the parabolic case, a uniqueness result follows.
2.2.7 Corollary. Under the assumptions of Theorem 2.2.6 let u,w € ()N
C%(Q) satisfy
Lu= Lw in Q
u=w on IJN.

Then u = w.

Strong maximum principles

In many situations the weak maximum principle is enough to deduce first a priori
estimates. However, in some situations it is useful to know that the maximum
can not be attained in the interior, unless the function is constant. This is the
statement of the strong mazximum principle. The crucial lemma in the parabolic
case is the propagation of positivity, which is of independent interest, since it
nicely demonstrates the diffusive effect of the heat equation, namely that heat
tends to “spread out”. We follow [11], with few adjustments which are due to the
fact that we have not proven the weak maximum principle for general domains.

2.2.8 Lemma (Propagation of positivity). Let n € N, a,r,tg > 0, g € R
and
Q= (to,to + Ot’l”z) X BT(CC()) c R+

Let P = a?ﬁjafj + b'0; + d — 0y be a linear uniformly parabolic operator in a
neighborhood of QQ with

Y(t,x) € Q V(&) € R™: N¢)? < a¥(t,2)&& < AJE?
for positive constants A < A and also suppose in Q that
|| +|d] <A, d<0.

Let u € CY2(Q) satisfy

u>0, Pu<O0

and )
dh>030<e< 3 Vx € Ber(zo): u(to, ) > h.

Then there exists a positive constant k = k(a, A\, A, ), such that

wGBgﬂymm+m%@z%h
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Proof. We may assume to = 0 and xg = 0. The idea is to construct a barrier
for u in some domain Q, which we will call x. It must be constructed to satisfy
Py >0in Q and x < u on a suitable piece of the boundary Q. Then we will
concluce x < u%. If x is good enough, we can conclude the desired estimate for
u at time ar?.

Since we have information about u on the piece {0} X B-(0) and want to
obtain information on a bigger ball at later time, the most natural domain Q is

a trapezoid,

Q={(t,x) eR":t e (0,ar”), |z < p(t)} C Q,

where )
1—
o(t) = Sttt
«

At positive times, the function u is only known to be non-negative, hence we
have no choice for the barrier, but to let it be zero on the boundary pieces

{t} x aBW%(t)(O). However at the time ar? we want the barrier to be positive

in {ar?} x Bz (0) and the simplest function to satisfy this would be a quadratic
one,

U(t,z) = () — |2f).

This could be a first guess. Let us see what it gives. The first thing we have to
calculate is Py. We have

1—¢€?

,(/Jl(twr) = _2-/171" ¢,lj<t7x) = _26ij7 ¢ = o .

Hence

Pt ) = —2a7 (1, 2)5,; — 20 (t, @) + dub(t, ) —

This does not seem promising yet, since the term —2a% 0;; does not have a good
sign. The function % is too concave. To make it more convex, we could square
it. We get

P(?) = 2Py + 2079 b j — di)?
= 2P + 8a" wyw; — dip?
1— ¢

(0%

> 8\|z|* — dvp tr(a) — 49|b||2| — 2[d|p* — 24
> 8)\80 - Cwa

where ¢ = ¢(a, A\, A, 7).

This looks better, but we still have to absorb the term involving . As often

in the theory of the parabolic equations, one can exploit the ¢-direction’. In

5We have not defined the parabolic boundary for general domains in R"t1, so we must
work around this.

6By a simple argument. The weak maximum principle is not needed here and we have
not proven it for general domains Q

7as we have already seen in the proof of the weak maximum principle.
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order to produce a good term coming from the ¢-direction, we multiply ¥ by a
(possibly heavily) decreasing function in ¢. It must only contain values, which
k is allowed to depend on, hence ¢ seems to be a good candidate. Hence for
q > 0 we put
z = p It
Then - )
Pz=a"%;; +bz; +dz— %

—q 2 —q—11_€2 2
= IPW%) +qp T —
1— 2,2

2 a @

_ 1) 1—é€? 1 2
oo 1))

>0

for small § and large q. Now we have to take care about the boundary values.
In order to adjust z to be less than u on the bottom of the cylinder, we have to
multiply it by some factor. Put

x = h(er)? 1z,
Let us compare x with u. By construction there holds

= < 1 .
xt,z)=0<u Vze ané(t)(O)

Furthermore, for all |z| < er,

x(0,2) = h(er)? 4 (er)729(*r? — |2]?)? < h < u(0, z).

At all other points in the closure of Q it is not possible for Y — u to obtain
a positive maximum, since at such points we would have P(x — u) < 0, in
contradiction to Px > 0 and Pu < 0. We conclude

xX<u

throughout @, which implies at ¢t = ar? and for all |z| < r/2:

u(ar?, z) > h(er)? ™ 4r=24(r2 — |z))2 > %he”.

We deduce the strong maximum principle.

2.2.9 Theorem (Parabolic strong maximum principle). Letn € N, Q C R"
a domain, T >0 and Q = (0,T) x Q. Let

Pu = a"uj + blu,; + du — 1

be locally® uniformly parabolic with locally bounded coefficients and d < 0. Sup-
pose u € CH2(Q) satisfies Pu > 0 and

I(to, zo) € Q: supu = u(to,v9) > 0,
Q

80n each compact set the coefficients have this property.
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then
U|(0,t0]xQ2 = const .

Proof. Tt suffices to prove the constancy on (0,%y) x Q. Let
M = u(to, x0)
and suppose there exists (¢,2) € (0,%p) x  with
u(t,z) < M.
Let v: [0,1] — Q be a curve from z to o and
S={oce€[0,1]: u(sto+ (1 —9)t,v(s)) <M V0<s<o}.

Then S C [0,1] is an interval with 0 € S. Furthermore, whenever 1 > 5o € S,
due to continuity of v we find € > 0, such that sg+¢ € S.° We will now show that
S is also closed, then we conclude that S = [0,1] and we have a contradiction.
Therefore let s be a sequence in S which converges to so, € [0, 1] from below
and set

tr = skto + (1 — sg)t.

Choose a ball
B (7(500)) C

and k so large that
V(s0c) € By (7(sk))-

Due to continuity there exists 0 < € < 1/2 and h > 0 such that

(M - u)(tk7y) >h>0 VZU € BGT("Y(SIC))'

Pick
too — Tk
o= 2
and deduce from Lemma 2.2.8 that
(M —u)>0
on {teo} X Bz (v(sk))- O

The elliptic strong maximum principle is a consequence of the parabolic one.

2.2.10 Theorem (Elliptic strong maximum principle). Letn € N, Q C R™ be
a domain and

Lu = a"uj +bu,; +du
be locally uniformly elliptic with locally bounded coefficients b',d and d < 0. Let
u € C%*(Q) and Lu > 0, then u does not attain a non-negative mazimum in ),
unless u is constant.

98 is open in [0, 1].
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Proof. Suppose the set

A={zxeQ:ux) :sgpu}

is not empty. Due to continuity A is certainly closed. We prove that A is
open. Let xg € A and B,(zg) C Q. Let @ = (0,1) x B,(zp) and set for all
(t,z) €0,1] x Q

v(t,x) = u(z).

Then v € C?(Q) and P = L — 9; is a linear uniformly parabolic operator in Q.
We have

Pv=Lv—v=Lu>0.
Furthermore for all ¢,

v(t, zg) = maxwv
Q

and hence v is constant on {t} x B,(xg), which means that u is constant on
B,.(xg). This proves that A is open and hence A = (. O

The Hopf lemma

We prove the Hopf boundary point lemma for parabolic equations. Similar
versions can be found in [11, Lemma I1.2.8] and [4, Lemma 2.7.4].

2.2.11 Lemma. LetneN, T >0,z R" zy € 9dB,.(2),0<ty <T and
Q= (0,T) X B.(2).

Let N '
P =a"0} +b'0; +d— 0,
be a linear uniformly parabolic operator in Q with bounded coefficients b, d and
d<0. Let u € CY23(Q) N CH(Q) satisfy
Pu >0, wu(ty,zo) >0

and
Y(t,y) € (0,T) x B.(2)\{(to, z0)}: u(to, z0) > u(t,y).
Then there holds

@
ov

where v denotes the exterior normal to OB,(z) at xo.

(t(), ZL'()) > 0,

Proof. Let 0 < p < r.In A= B,(2)\B,(2) define
h(z) = emelr==® _gmar® g 5 0,
Then in A we have for suitable A > 0,

Ph(z) = e‘a|x_z|2(4a2aij(mi — 2)(zj — 2j) — 20" 5,5 — 2ab* (z; — 2)) + dh
> e~ = (402 Nz — 2|2 — 2a(dl + |b]|z — 2|) — |d])
> 0,
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if «v is large enough. Since for all 0 < § < ¢y there holds
U|[5,t0]x 0B, ()U{s} x A < u(to, To),
we find € > 0, such that in [§,%9] X 0B,(z) U {0} x A there holds
w = u — u(xg,to) + eh < 0.
Furthermore in [d, tp] x int(A) we have
Pw = Pu — u(ty,zo)d + ePh > 0.

Thus we conclude w < 0 from the weak maximum principle, Theorem 2.2.2.
Since w(tg, o) = 0, we obtain

ow ou oh
0< 7(150,330) = a(to,l’o) + 65(750,,%0),

— v
from which the claim follows. ]

The elliptic version, originally due to Eberhard Hopf [7], is suggested as an
exercise.

2.2.12 Lemma (Eberhard Hopf). Letn € N, B C R™ be a ball and xo € 0B.
Let B _

L= a”&fj +b'0; +d
be a linear uniformly elliptic operator in B with bounded coefficients b, d and
d <0. Let u € C*(B) N CY(B) satisfy

Lu>0, wu(xg)>0

and
Ve € B: u(z) < u(zo).
Then there holds
ou

E(CEO) > 0,

where v s the outer normal to B in xg.

A corollary of the Hopf lemma is a uniqueness result for the Neumann prob-
lem, the proof of which is an exercise. First we need another definition.

2.2.13 Definition (Interior ball condition). Let @ C R™ be open. For every
boundary point xg € 92 we say that (2 satisfies an interior ball condition at xy,
if there exists a positive number r and a ball B,(z) such that

B.(z) CQ, B.(x)NoN={xo}.

We say () satisfies an interior ball condition, if () satisfies an interior ball con-
dition at every xg € 9.

2.2.14 Exercise. Let Q C R"” be a bounded domain that satisfies and interior
ball condition. Let N _
L= a”&fj +b0'0; +d
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be a linear uniformly elliptic operator with bounded coefficients b',d and d < 0.
Let u € C?(Q2) N C*(Q) satisfy the Neumann problem

Lu=01in Q
0
8—1::00n8§2,

then u is constant in 2.

2.3 Comparison principles for fully nonlinear op-
erators

The maximum principle is not restricted to linear equations. In this section we
will employ the linear case to prove comparison principles for fully nonlinear
equations. First of all we have to say, when a fully nonlinear operator is elliptic
or parabolic. A good orientation for this section is [5].

Fully nonlinear elliptic and parabolic operators
2.3.1 Definition (Elliptic operators). Let n € N and Q C R™ open.

(i) Let
2
F'cR®” xR" xR x Q.

A partial differential operator of second order in ) is a map
Lr: ACC?(Q) —»R?
u +— F(D?u, Du,u, ),

where F' = F(r,p, z,x) isamap F: I' — R and A is the set of F'-admissable
functions, i.e.

Yu € AV € Q: (D*u(x), Du(z),u(x),z) € T.

L is called elliptic in u € A, if

ij [ OF
(FY(D*u(z), Du(z),u(z),z)) = (57‘ij (D2u(x),Du(m),u(x),x)>

sym

exists and is positive definite for all x € Q. For a set S C A, L is called
elliptic operator in S, if L is elliptic in all ©w € S.1°

(ii) Let S C A. L is called strictly elliptic in S, if
N> 0VueSVY(E) € R FY(Du, Du,u, -)&& > ME|?
and uniformly elliptic in S, if

0 < A< AVueSV(E) e R": NE? < FY9(D*u, Du,u,-)&&; < AJE)?.

10For a matrix A, Asym denotes its symmetrisation %(A + Ab).
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2.3.2 Example. (i) Every linear elliptic operator in an open set 2 is an el-
liptic operator in C?(€2), since

Lu = a"u ;j + b'u; + du = F(D*u, Du,u,-)

with N ,
F(r,p,z,x) = a”(z)ri; + b"(z)p; + d(z)=.

(ii) The Monge-Ampére-equation is
det(D%*u) = f
with a function f € C°(Q). The corresponding differential operator is then
Lp(u) = F(D*u) = det(D%u).
If r is invertible, from (1.6) we obtain

oF ii
ar (r) = ((detr)r J)Sym ,

where r~! = (r%). Hence L is elliptic all all strictly convex wu.

2.3.3 Exercise. The equation of prescribed mean curvature is

H(D2u7Du,u7 ) = div (V“) = f.1

VI+ VP

Prove that on each set
Ao ={u e C*Q): |Vul* < ¢}

L is uniformly elliptic.
We have a similar definition for the parabolic case.

2.3.4 Definition (Parabolic operators). Letn € N, Q C R™ open, 0 < T < 00
and @ = (0,T) x Q

(i) Let
2
FcR" xR" xR x Q.

A partial differential operator of second order in @ of the special form
Pr: AcC CH3(Q) —» RY
u+— F(D%u, Dyu,u,-) — 1,

where F' = F(r,p,z,t,z) is a map F: T' — R and A is the set of F'-
admissable functions, i.e.

Vu € AVY(t,z) € Q: (D2u(t,x), Dyu(t,x),u(t,z),t,2) €T,

11 Recall the relation between Du and Vu, cf. Definition 1.4.5.
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is called parabolic in u € A, if

F9 .= <gf (Diu(t,m),Dxu(t,x),u(t,x),t,a:))
%]

sym

exists and is positive definite for all (¢,z) € Q. For a set S C A, Pp is
called parabolic operator in S, if Pg is parabolic in all u € S.

(ii) Let S C A. P is called strictly parabolic in S, if
IN>0Vu e SV(&) € R": FY(D2u, Dyu,u,-)&& > NEP
and uniformly parabolic in S, if

0 <A< AVueSVY(E) eR™: NE? < F9(D2u, Dyu,u, )€ < AJEJ2.

2.8.5 Example (Mean curvature flow). The differential equation

Vu
Ou = /1 + |[Vul2div | ———
' Vel <\/1+|Vu2>

is called the (graphical) mean curvature flow. As in Exercise 2.3.3 we can check
that the mean curvature flow is uniformly parabolic on each set of functions
with bounded spatial gradient.

Comparison principles

Now we prove versions of the maximum principle for general (fully nonlinear)
elliptic and parabolic operators. In this context they are called comparison
principles. We start with the elliptic case.

2.3.6 Theorem (Elliptic comparison principle). Letn € N and Q@ C R™ open
and bounded, ,
TCR® xR*" xR x

and F € Rricontmuously differentiable in its first three variables. Let u,v €
C?(Q)NC%Q) and let L be a strictly elliptic operator on

S={ru+({1—-71)v: 7€][0,1]}

with

de>0VweSVereQ: gj(DQw(m),Dw(x),w(x),x) <c
p

and

Yw € S: %—F(D2w,Dw,w, ) <0.
z

Suppose u, v satisfy
F(D?u, Du,u,-) > F(D*v,Dv,v,-) inQ,
u<wv on 00

then there holds



Proof. Define
X =u-—u.

There holds
0 < F(D*u, Du,u,-) — F(D*v, Dv,v,-)

1
d
= / d—F(TDQu + (1 =7)D*v,7Du+ (1 — 7)Dv,7u + (1 — 7)v,-) dr
0 T
1 1 1
. OF oF
= F”Xi‘JF/ aXi T | [oX
/o ! o Opi o 0z
=a”x,j +b"xi +dx
with
.. 1 ..
a’ = / F9(rD*u+ (1 —7)D*v,7Du+ (1 — 7)Dv,7u + (1 — 7)v,-) dr
0

and similarly for b* and d. Thus  satisfies the linear problem

Lx = aijx,z’j + biXJ‘ +dx >0 inQ,
x <0 on 9o

with positive definite (a*/) and

M<c
)\—)

The weak maximum principle, Theorem 2.2.6, gives

d <0.

x<0
in all of €. O

The parabolic case is similar.

2.3.7 Theorem (Parabolic comparison principle). Let n € N and Q C R"
open and bounded, 0 < T < 0o, Q = (0,T) x £,

TCR” xR" xR x Q

and F € RV continuously differentiable in its first three variables. Let u,v €
C12(Q) N C%Q) and let Pr be a strictly parabolic operator on

S={ru+(1-71)v:7€0,1]}
with OF
Yw € S: E(Dgw,Dwuuw, ) <0.
Suppose u, v satisfy
F(D2u, Dyu,u,-) — i > F(D*v, Dyv,v,-) — % in Q,
u <o on 0,Q

then there holds



Proof.
X =u-—u.

There holds
0 < F(D?u, Dyu,u,-) — @ — F(D?v, Dyv,v,-) + 0
— /01 %(F(TDiu + (1 = 7)D2v,7Dyu+ (1 — 7)Dyv, tu + (1 — 7)v, -))
— (i + (1 —7)0) dr

1 1 1
g OF oF
_ Fiiy. or or .
/(; Xij + /O ap; Xi + . 0z X=X
= a5+ 0'xi +dx — X

with
a¥ = / FY9(tD*u+ (1 — t)D2v,tDyu + (1 — t)Dyv, tu + (1 — t)v,-) dt
0

and similarly for b* and d. Thus Yy satisfies the linear problem

Py = ain’ij +bixi+dx—x>0 inQ,
x <0 onoQ
with positive definite (a”/) and d < 0. The weak maximum principle, Theo-

rem 2.2.2, gives
x<0

in all of Q. [
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CHAPTER 3

SOBOLEV-SPACES

Until now we have obtained some uniqueness results for various kinds of PDE,

e.g.
Au= fin Q

u = @ on 0§,

but we have not said anything about actual existence of a solution. Even if f
is smooth, it can be difficult to prove existence of a smooth solution directly,
since the spaces C*(Q) are relatively small for this purpose. So the strategy is
to widen the space, in which we look for solutions. Hence we leave the class
of differentiable functions and look instead at the space of weakly differentiable
functions, the so-called Sobolev-spaces W P(). Here one can use Banach-
or Hilbertspace methods to get existence of a weak solution relatively easy.
Afterwards we will show how smooth this weak solution actually is, dependening
on the right hand side f.

The present chapter is devoted to provide the necessary theory of the Sobolev
spaces. Good sources for this chapter are [5, Ch. 7] and [17].

3.1 Elements of functional analysis

The theory of weak solutions to partial differential equations requires some
basic knowledge in functional analysis, which was promised not to be required
to follow this course. Hence this section is devoted to provide the results we
need. During the following weeks, this is a dynamic section, which means that
it grows while we are already talking about Sobolev spaces. This strategy has
two advantages: Firstly you will see the theory of functional analysis “in action”
right away and secondly the various results will not be scattered around within
the rest of this chapter, but will be thoroughly collected in this one section.

Mobollifiers and smooth approximation

The following construction is an extremely useful tool to carry over properties
of smooth functions to less smooth functions.

3.1.1 Definition (Mollifier). Let n € N and @ C R™ open.
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(1) A mollifier is a non-negative function n € C°(R™) with
suppn € B1(0), / n=1

(ii) For a mollifier 7, a function u € Ll (), @' € Q and 0 < € < dist(Q', 99)
we define their e-convolution by

wo)= [ nlo—yu) dy Voe,

where

ne(@) =< ().

€

A special feature of the convolution is, as a rule of thumb, that it approx-
imates a function locally as strongly as the function actually is. The proof of
the following proposition is an exercise.

3.1.2 Proposition. Let n € N, Q C R" be open, € > 0, n a mollifier and
u € L (). Then there hold:

loc

(i)
VO € Q Ve < dist(,09): ue € C°().

(ii) If u € C*(Q) for 0 < k < oo, then

v e Q: li_I}%)‘ue — Ul =0.

(iii) If u € LY (), p < oo, then

loc

VQ' € Q: lim ||lue — ul|p0 = 0.
e—0

(iv) CX(R) is dense in LP(Q), if p < oo.

As an application we prove one of the most important tools in analysis, the
fundamental lemma of the calculus of variations.

3.1.3 Lemma (Fundamental lemma of the calculus of variations). Letn € N,
Q CR" open, f € LL.(Q) and suppose

loc

Vo € C(): / fe>0.
Q
Then there holds f > 0 almost everywhere in Q.
Proof. We have to show that
LY(E) =L"({f <0})=0.
We may assume that £ C € is compact, otherwise consider a countable ex-

haustion of © by compactly contained sets. Since yz € L'(f2), there exist
gn € C°(Q) with

In = / Nen (- —Y)xE(Y) dy — XE
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in Llloc(Q) and pointwise almost everywhere in E with a sequence ¢, — 0. Due
to the Lebesgue convergence theorem we get

Oé/Qfgn—>/QfxE.

Due to fijg < 0 we obtain L"(E) = 0. O

Linear operators

We collect some basics about linear maps between normed spaces and follow [3,
Sec. 2.7].

3.1.4 Proposition. Let E and F' be normed vector spaces over K and
A:E—F

be a linear map. Then A is continuous if and only if there exists a constant
c >0, such that
|Az|| < c|jz|| Vz € E.2

Proof. If such a constant exists, then
[Az — Ayl < cllz —y||

and A is continuous. Now suppose A is continuous. If ¢ does not exists, then
there exists a sequence z,, € E such that

[Azn[| > nllzn|

<[ ()| o
]

a contradiction. O

Thus

3.1.5 Definition. Let E and F be normed vector spaces over K.

(i) Define L(E, F) to be the K-vector space of continuous linear maps from
E to F. For A € L(E, F) define

IAllLe.r) = inf{c = 0: [[Az[| < clz]| Vz e E}.

(ii) We also write
E' = L(E,K).

3.1.6 Exercise. Let F and F' be normed vector spaces over K.

LA linear map between normed spaces is often called linear operator and if F = K it is
also called linear functional.
2If no ambiguities are possible, we do not distinguish the norms in E and F notationally.
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(i) Prove that (L(E,F),| - |lL(g,F)) is a normed vector space over K, which
is complete if F' is complete.

(ii) There holds for all A € L(E, F):
[ Az|

zeE\{0} [l .

Al =

(iii) Let (H,g) be an inner product space. Then there holds the Cauchy-
Schwarz inequality
lg(z,y)| < [lzllgllyllg-

The Riesz representation theorem

In Hilbert spaces H every continuous linear functional is given as a scalar prod-
uct with a fixed z € H. To prove this, we need a lemma.

3.1.7 Lemma (Projection onto closed subspaces). Let (H, g) be a Hilbert space
over R® and M a closed subspace. Then for all x € H there exist y € M and

zeM*t:={z€ H:g(x,2) =0 Ve € M},

such that
rT=y+z.

Proof. We may suppose x ¢ M. Define
d = dist(z, M)
and let (y,)nen be a minimizing sequence, i.e.
d(z,y,) — d.

We have

2

1
T — Q(yn + Ym)

1y = ymlly = 2l = yall; +2llz — ymll; — 4
g
< 2|z — ynll + 2llz — ymll; — 4d?

— 0,
as n,m — oo. Hence (y,) is a Cauchy sequence which has a limit y € M. Put
=2 Y,

then for all y' € M there holds

d
0= 2l =+t =0 = —20(z,¥)

and hence z € M. O

3only for simplicity
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3.1.8 Theorem (Riesz representation theorem). Let (H,g) be a Hilbert space
over R. Then the map
J:H— H'

y—9(,y)

is a norm preserving linear bijection.
Proof. J maps to H', since J(y) is linear and for all x € H

[T ()| < lg(z, v)| < llyllgllllg-

J is obviously linear and we have

1T @) e < lyll-
From J(y)y = |lyl|Z we also obtain
1Tl = [lyllg-

Hence J is norm preserving and thus injective. It remains to prove the surjec-
tivity. Hence let ¢ € H'. If ¢ = 0 we take 0 € H. Otherwise pick z € H with
the properties
Izl =1, g(z,9) =0 Vy € ker().
For all x € H we have
Y(x)
¥(z)

z € ker (%))

and thus
g (z,9(2)2) = ¢(x) Vx e H.

Weak compactness in Hilbert spaces

The closed unit ball in R™ is compact. But infinite dimensional Banach spaces
this is not true anymore. However, in this situation it is weakly compact, as we
will prove in this subsection.

3.1.9 Definition (Weak convergence). Let (E, | -||) be a normed vector space
over K. A sequence (2,)nen converges weakly to x € E, if

Vo € E': ¢p(z,) = o).

In this case we write
Ty, — .

Before we can prove the weak compactness of bounded sets in Hilbert spaces,
we recall the following very useful construction.

3.1.10 Lemma (Cantor’s diagonal sequence). Let A, B be sets, M a metric
space and
g:AxB—->M

a map. Let (xp)nen and (yr)ren be sequences in A resp. B, such that for all
k € N the sequence (g(n,yx))nen has a convergent subsequence. Then there
exists a subsequence (;)ien of (Tn)nen, such that

Vk e N 3oy, € M: lim g(z;,yx) = ag.
71— 00
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Proof. We construct a sequence of subsequences of (z,,),en inductively. Since
(9(n,y1))nen has a convergent subsequence, there exists a first subsequence
(x,1)jen and oy € M, such that

J

lim g (Z‘njl_,yl) — 1.

Jj—o0
Let m subsequences (2,1)jen, - - -, (Tnm)jen Of (Tn)neny and a1, ..., a;y, be con-
J J

structed, such that for all all 1 < [ < m — 1, (né“)jeN is a subsequence of
(né-)jeN and all 1 <! < m there holds
g(xné ) yl) — oq.

The sequence (g(mn;n, Ym+1))jeN contains a convergent subsequence

lim g (xn’,"""lamerl) = Qm41-
Jj—o0 J

We have constructed a sequence of subsequences ((mn;n) jeN)men with the prop-

erties that (n}”H)jGN is a subsequence of (n}");jen and

Vm e Nt lim g(zpnr, ym) = am. (3.1)

J—00

Then the diagonal sequence

(@i)ien = (x"> ieN

has the property
vk € N: lim g(z;, yx) = au,
71— 00

since for every k € N, the sequence (z,:);>% is a subsequence of (z,);en and
the latter satisfies (3.1). O

3.1.11 Theorem. Let (H,g) be a Hilbert space over R, then every bounded
sequence (n)nen i H has a weakly convergent subsequence.

Proof. By the Riesz representation theorem it suffices to prove:
Jr € HVy € H: g(xvn,y) = g(x,y).

First suppose that there exists a countable dense set {yj }ren in H. By Cantor’s
diagonal method we obtain a subsequence (z;);en of () with the property

Vk € N Jai € R: lim g(z;, yi) = o.
1— 00

Define
Y(yr) = Jim 9(xi, yr) = o,

then ¢ is a continuous linear map on span(yx)ren due to the boundedness of
(2;)ien. Hence it may be extended to a bounded linear functional ¢ € H’, for
which we find x € H with

Vy € H: Y(y) = g(y, ).
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Hence for all y € H

lg(zi,y) — g(z, )| < lg(zi,y) — g(zi, ye)| + |9(zi, yx) — 9(z, yx)|
+ l9(@, yx) — g(, y)]
< (c+zDllye — yll + |g(zi, yx) — g(z, yx)|-

Choosing ||y — yk|| small and then ¢ large gives

Yy € H: g(xi,y) = g(x,y).
If there is no countable dense subset, first apply the previous result to

Ho = span(zn)nen

and obtain a subsequence (z;) and z € Hy such that

Vy € Ho: g(xi,y) = g(,y).
For arbitrary y € H let, according to Lemma 3.1.7,

Y = Y1+ Yo,

where yo € Hy and y; € Hg-. Then

9(wi,y) = g(wi,90) = 9(z,90) = g(z, ).

We will also need the following fact.

3.1.12 Proposition (Weak lower semicontinuity). Let (H,g) be a Hilbert
space and suppose T, — x. Then

< limi .
llg < lim inf [z,

Proof.
]2 = gl ) = liminf gz, 2) < imint 2, 1]

Fredholm alternative in Hilbert spaces

From elementary linear algebra we know that a linear map from R” to itself is
injective if and only if it is surjective. In infinite dimensional space this is not
true in general, as can be seen from the shift operator on [*°(R)

(xn)neN — (0, T1,22,. .. )

However, for certain “small” perturbations of the identity this is still true and
we will prove this now. For simplicity we restrict to Hilbert spaces again.

3.1.13 Definition. Let E and F' be normed vector spaces over K and
A: E— F

be a linear map. A is called compact, if for every bounded sequence (z,)nen, a
subsequence of (Ax,,),en converges in F'.
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3.1.14 Theorem (Fredholm alternative). Let (H,g) be a real Hilbert space
and T: H — H compact. Then I — T is injective if and only if I — T is
surjective. In this case (I —T)~' is continuous.

Proof. Let S :=1—T. We write | - || = || - |- The proof contains four steps.

(i)
Jde > 0 Ve € H: dist(z, ker(5)) < ¢||Sz|], (3.2)

since if (3.2) was wrong, then
3z, € H: d,, = dist(x,, ker(S)) > n||Sz,||

w.lo.g. ||Sz,|| =1, such that d,, > n. Choose y,, € ker(S) such that

dp, < ||@n — ynll < 2d,. (3.3)
and define
. Tn—Yn
Zpy = ——— 2
|20 — ynll
Then s )
lell =1, |18z = 52l L
20 = ynll = dn

Szp = zn — Tz, and T is compact, we get
Zn — Yo
for a subsequence and hence
Sz, — Syg =0,

which implies yo € ker(S), which is a contradiction, since

. . Tn — Yn
dist(z,, ker(9)) = inf ||——— —yH
(enber(8)) = o o | Tam = ]
1 d 1
= inf ———— |z, —yll = —— > 7,
yeker(S) [|Zn — ynl| |20 — yull — 2

by (3.3).
(ii) The image of S, R = R(S5), is closed: Suppose

Sx, —y € H.

Step (i) implies that d,, < ¢||Sz,]|| and the latter is bounded. Choose y,, € ker(.S)
as in (3.3). Then
Wp = Tn — Yn

is bounded and
Swy, = Sz, = y.

Since T is compact, there holds Tw,, — wq for a subsequence and hence
Wp — Y + Wo
and

S(y +wo) = y.
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(iii)
ker(S) = {0} = R=R(S)=H.

Suppose the claim was wrong and define R; := S7(H). Then R; C R;_;. Con-
sider
S R]' — Rj.

Then by step (ii) R;41 is closed. We claim
JkeNVj>k: Rj = Ry.
Otherwise choose orthogonal elements
Tn € Ry ||zl =1, xn L Rpgq.
Let n > m, then
Tz, — Txy = Ty + (—25 — STy + Szy)

and hence
Tz — Ta,|| > 1,

which is in contradiction to the compactness of T. So let y € H, then S*y €
Ry = Rg41, then
0=S*y — SkHly = S¥(y — Sx),

y= Sz

and thus S is surjective.
(iv)
R=H = ker(S)={0}.

The sequence N; = ker(S7) consists of closed subspaces
Nj C Nj+1, 7> 1

We claim that
JkeNVj>k: N; = Ny.

If the claim was wrong, then
2 € Nyt lzm]l =1, @ L Nyppeq.
Let m > n then, analogously to step (iii), we obtain a contradiction due to
Try —Txy = Ty + (—2y — ST, + Sxy),

since S(N;) C N;_1. So suppose R = H, then for all k there holds R(S*) = H.
Hence
Yy € N, 3z € H: 0 = S*y = %z,

Then
2 € Nap = Ny,

hence y = 0 and
ker(S) = Ny € Ny = {0}.
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Theorem of Lax-Milgram

We need a refinement of the Riesz representation theorem. For this we need a
lemma, the proof of which is an exercise.

3.1.15 Exercise. Let (H,g) be a real Hilbert space and T € L(H, H) satisfy
de>0Ve e H: |jz|g < cf|Tx||g-

Prove that T(H) C H is a closed subspace.

3.1.16 Theorem (Lax-Milgram). Let (H, g) be a real Hilbert space and B: H x
H — R be a bilinear form, which is bounded, i.e.

de >0V, y € H: [B(z,y)| < cllzllglyll

and coercive, i.e.
IN>0Vx € H: B(z,z) > >\||x||§

Then for every ¢ € H' there exists a unique v € H, such that
B('7 U) = d)

Proof. Let w € H. By the Riesz representation theorem there exists a unique
Tw € H, such that

This defines a linear map T: H — H. There holds
ITw|; = B(Tw,w) < cllwlg||Twl,
and hence T' € L(H, H). Furthermore
)\Hw||3 < B(w,w) = g(w, Tw) < |w||g/|[Twl|,

and hence
vw e H: [Twll, > Alwl,.

Hence T is injective and has closed range. Suppose T(H) # H. Then there
exists an orthonormal element z € H, i.e.

Yw e H: g(z,Tw) = 0.

Putting w = z we obtain B(z,z) = 0 and hence z = 0. Thus T is bijective with
continuous inverse.
Now let ¢ € H' be given, and w be such that

Set
v=T"w
and obtain
B( 7”) = g('aw) = 1/)
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Compactness in function spaces

Later we need two important theorems, which characterise compactness of sub-
sets in Holder- and LP-spaces. The first one is the theorem of Arzela-Ascoli.
We follow [3].

3.1.17 Theorem (Arzela-Ascoli). Letn € N, Q2 € R" open. Then the closure
of a set A C C°(Q) is compact if and only if for every x € Q the set

A(z) = {f(z): f € A}
is bounded and A is equicontinuous, i.e.

Ve>030>0VfeEAVr,yeQ: Jz—yl<é = |fx)-Ffly)l<e

Proof. “=": Compact sets in metric spaces are always bounded, since they can
be covered by finitely many balls. Hence A C C°(Q) is bounded and hence for
allz € Q and f € A:

lf@)] < |floq <ec

If A was not equicontinuous, then there existed € > 0 and sequences (fn)nen in
A and (iﬂn)neN, (yn)neN in Q, such that

1
|Zn — yn| < w’ | fr(n) — fu(yn)| > €
Due to the compactness of A and Q, we find a sequence of indices n such that
fon = FEC°Q), 2p, =2, Yn, — .

But then

+ 1 f (Yni) = Frr (Yni )l
<2|fay = flog + [ f(@n,) = f(yni)l

— 0,

a contradiction.

“<”  has a countable dense subset D = {y; }ren, e.g. Q"N Q. We have to
prove that every sequence (f,,)nen in A has a uniformly convergent subsequence.
Setting

g AxQ—=R

a(f,y) = f(y),

we see that g, (f,) and (yx) satisfy the assumption of Cantor’s diagonal se-
quence lemma, Lemma 3.1.10, and hence there exists a subsequence (f;)ien
that converges pointwise,

Vk € N Jday € R: li>m filyr) = o =: fyg)-

The function f: D — R is uniformly continuous, since for ¢ > 0 we may pick
0 > 0 such that for all ¢ there holds

[y —yml <6 = [filyx) — filym)| <€
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and hence for |y — ym| < ¢ there holds

|f (i) = fQym)| < 1F(yr) = Fily)| + | fiyr) = Fiym)| + 1 £i(Ym) — f(ym)]
<|[f(yr) — filye)| + € + [ filym) — f(ym)]

and
|f(yk) — f(ym)| = limsup | f(yx) — f(ym)| < €.

71— 00

Thus f is uniformly continuous on a dense subset of  and may be extended
uniquely to a continuous function on .* All that is left to show is the uniform
convergence of f; to f. Let € > 0 and pick § > 0 such that for all A € {f;}ien U
{f} there holds

le—y|l <o = |h(z)—h(y)| <e

Then finitely many of the balls Bs(yx) cover £ and we obtain for all z € Q:
[f(2) = file)l < min (1f(z) = f(ye;)] + 1 filyr,) = fil)])

1<j<N

+ max, |f (k) — fiyw,)]

< ) — filyk,
< 2¢ 4 max [£(y,) — filyr,)]

and the uniform convergence follows. O

3.1.18 Corollary. Letn € N, Q € R" open and 0 < o < 1. Then the
inclusion map - -

CP(Q) = C°(Q)
18 compact.

Proof. First of all, every function f € CO_"’(Q) extends to a continuous function
on Q. Let (f,)nen be bounded in C%%(Q), then

|fn(@) = fa(W)] < [fnla.o

and hence the set {f,}nen is pointwisely bounded and equicontinuous. By
Arzela-Ascoli it has a uniformly convergent subsequence. O

r—y| <clr -yl

A similar result holds in LP-spaces.

3.1.19 Theorem (Kolmogorov). Letn € N, Q € R™ open and 1 < p < co.
The closure of a subset M C LP(2) is compact if and only if M° is bounded and
equicontinuous in the mean, i.e.

Ve>036>0VueM: 0<|h/<d = |u—u(-+h)|pr: <e.

Proof. Let M C LP(Q) be compact. Then M is bounded. Let ¢ > 0. Then
there exist (u;)1<i<n in M, such that

N
M C | Be(w).

=1

4This statement shall be proven as an exercise.
5More precisely: The set M of functions in M, which are extended to R™ by zero
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Let u € M, then u € Bc(u;,) and
-+ h) ~ e < min (fuC+B) — -+ )z + s — )

+ nax lui(- + h) = wil[prn
<2+ max, i (- + ) = willp g,

and the equicontinuity in the mean follows. We have used that a finite collection
of functions is equicontinuous in the mean.®

Now suppose M is bounded and equicontinuous in the mean. Then this is
also true for M. For 6 > 0 let (15) be a Dirac sequence. Let

Us = U *15s.
Then
s () — u()|? = /B o, —y) —u@) dy
= /B (0)777); y)ms%(y)(U(x—y) —u(z))| dy
< /B o, G ) @)y
and hence

J s < [t [t )~ ey

The equicontinuity implies

sup g — ullp o < sup sup u(x —3) ~u@lpae 0 (3.4
uEM uweM |y|<d

as 0 — 0. - -
Now we claim that the closure of Ms := {us : u € M} C C°(Q) =: E7 is
compact in £. We have for any €  and u € M:

jus ()] < /B . " il @)z — y)ldy

< ( /B o Wtz =)l dy)

1
< sup [ns| ? [|ul|ppe < c.
Bs
Furthermore, for all x € Q and = + h € €2,

g (2 + 1) — s (2)] < /B . e (W) )lu(z + h - y) — u(z — y)ldy

1
< sup |ns[? [lu(- 4+ h) — ul[prn.
B;5(0)

6The proof of this is an exercise.
TWe restrict every ugs to .
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Thus M is equicontinuous and by Arzela-Ascoli Ms is compact in C°(Q). Now
let (u™)nen be a sequence in M and (dx)gen a sequence with §; — 0. The map

g: M x (0,00) = C°(Q)
(ua 5) = Us
and the sequences (u™),en and (0 )ken satisfy the assumption of Cantor’s di-
agonal lemma and hence there is a subsequence (u%);ey such that for every

keN _
ug, — Vs,

in C°(€2). We claim that (u,)ien is an LP(€2)-Cauchy sequence:

s, = b, llp < llus, —us,llp.g + llus, —uf, oo + luf, —uf lpe

< sup [lus, — s, |lp. + sup [lus, — ug,llp.o + [|luf, —u |

ueM ueM

sup [Jus, — ullp.0 + sup [lu —us,;llp0 +2 sup [lu— us, [0
ueM ueM ueM

p,2

IN

+ [lug, —ud, lIp.0-

Due to (3.4) we may, for given € > 0, pick k so large that

p.2 < 2¢+ sup |lug, — ullp+ sup lu—us, l|po+ |uf, —uj, [pa
ueM ueM

Ty
Picking i, j large enough gives
||ufii - uf;ij@ < Se.

Hence there exists v € LP () such that

ujs — .
Furthermore _ )
flu" — Ufh”p,ﬂ < sup [w —us,[[po —0
u€eM
as i — oo and hence (u') is the desired convergent subsequence. O

Abstract eigenvalue problems

Due the maximum principle we know that any solution u € C%(Q) N C°(Q) of
—Au=Auin Q
U‘OQ =0

must be zero, provided A < 0. What happens in case A > 07 Put in a different
way: Are there nontrivial eigenfunctions of the Laplace operator with Dirichlet
boundary condition? In this subsection we will answer this question in an
abstract Hilbert space setting to prove that there are weak eigenfunctions. Later
we will see that these are actually smooth.
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3.1.20 Lemma. Let (H,g) be a real Hilbert space, K a symmetric, continuous
and compact bilinear form® on H, such that

Vu #0: K(u) := K(u,u) >0

and B a symmetric, continuous bilinear form on H, which is coercive relative
K, i.e.
Jeg, ¢ > 0 Vu € H: B(u) := B(u,u) > c|ul|? — co K (u).

Let {0} #V C H be a closed subspace. Then the variational problem
B(v) »min, ve W=V N{K(v) =1}
has a solution u, which is also a solution of

[B(((Z))%min, 0#£veV.

Setting

sy

. (v)
A= ot K@)

)

then we have
Yo e V: B(u,v) = AK (u,v).

Proof. By coercivity we see, that B is bounded below in W and that a minimal
sequence u, is bounded above. Thus we suppose

U —=uevV
and deduce
K(ue) = K(u) =1

Because B + ¢y K is an equivalent norm on H, B + ¢ K is weakly lower semi-
continuous and hence

B(u) + coK(u) < liminf (B(ue) + oK (ue)) ,

e—0

which implies
B(u) < lim i(l)af Bl(ue).
€E—

Thus the first two claims follow. We calculate the first variation of

, Bw
T K@)
at the minimum wu:
_ d Blu+tv) _ 2B(u,v)  2B(u)K(u,v)
S dtK(utto),_,  K(u) K (u)?
and hence, for all v € V,
B(u,v) = (w) K(u,v) = AK(u,v).

8Every bounded sequence in H has a subsequence which converges in the norm induced
by K.
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3.1.21 Theorem. Let (H,g) be an infinite dimensional real Hilbert space, K
a symmetric, continuous and compact bilinear form on H, such that

Vu #0: K(u) := K(u,u) >0

and B a symmetric, continuous bilinear form on H, which is coercive relative
K, ie.
e, ¢ >0 Vu € H: B(u) := B(u,u) > c||u\|£27 — coK (u).

Then the eigenvalue problem
30 # u; € H Yv € H: B(u;,v) = N\ K (u;,v)
has countably many solutions \; of finite multiplicity. If we write
A< <

we obtain

i—00

The eigenvectors (u;) are complete in H.” They satisfy the orthogonality rela-
tions
K(ui, Uj) = (Sij
and
B(ui,uj) = A\ K (u;,uj),

as well as the expansions

B(u,v) = Z MK (ugy u) K (ug, v)

and
K(u,v) = Z K(ug,u)K (ug,v).

The pairs (i, u;) are defined by the variational problem

. B(u) o
By ) — : 3 = <j<i—1%.
Ai = B(ug,u;) mf{K(u) 0#ue H K(u,uj) =0V1<j<i 1}

Proof. Step 1: Solve the variational problem

B(u) .
m%mln, 0#ueH.

By the previous theorem there exists a solution w; and there holds
Vv € H: B(u1,v) = MK (up,v), K(uy) =1,

such that \; is the infimum.
Step 2: Let ¢ > 1 and let there be solutions for 1 < j <7 — 1. Set

V; = span(uy, ..., u;—1)

9span(u;) is dense in H.
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and let VX be the orthogonal complement of V relative K. Again, by the

previous theorem

. B(u)
. L. A . a
Ju; € Vi B(u;) = N\ mf{K(u) tu eV }

and
Yo e V1 Blug,v) = MK (ug,v).

For 1 < j <i—1 we have
B(’U,j,ul') = /\jK(uj,ui) = 0

Thus
Yo € H: B(u;,v) = A\ K(ug,v),

since

H=V,ok V"
The u; satisfy the orthogonality relation
B(ui, uj) = MK (us, uj) = Xidij.
Step 3: Suppose now the eigenvalues were bounded. We have
B(u;) = Ai, K(u;) =1,

and thus
coK (u;) + B(u;) = A; + co,

so that the u; are bounded. Hence

2:K(ui—ui+1)—>0

for a subsequence, which is a contradiction. By the same reasoning the multi-

plicity must be finite.
Step 4: We prove the completeness. Let u € H. Define

m

m
Uy, = ZK(u,ul)uZ = Zciui
i i=1

and
U, = U — U, € Vnirl.
Thus
Am+1K (v) < B(vp)
and . .
K(vm) =K(u) =Y ¢, Blvm)=Bu)—»_ \c
i=1 i=1
imply
B(vm,) <c
and thus
K(vy) —0



Furthermore there holds -
Z il < 0.
i=1

Let m < n.
B(vy, — o) = Z ic? — 0.

i=m+1
Thus the (v,,) form a Cauchy sequence in H and by K (v,,) — 0 we find

Uy, — 0.

This implies that the (u;) are complete and

B(u) = Z Nic?.
i=1

3.2 Distributions

The theory of distributions ensures the possibility to define derivatives of very
general objects, which will suffice for all our purposes. We will restrict to the
very basics here.

3.2.1 Definition (Test functions). Let n € N and 2 C R™ open.
(i) The elements of C2°(Q) are called test functions.
(ii) We define a sequence (¢)ren in C2°(€2) to converge to p € C°(Q), if

(a) Fko e NIV € Q Vk > ko: supppr C ' and
(b) o — ¢lmeo =0 ¥meN.

(iii) The vector space C2°(2) equipped with this notion of convergence is de-
noted by D(Q).

3.2.2 Definition (Distributions). Let n € N and Q C R™ open.

(i) A distribution on ) is a continuous linear map
©:D(Q2) — R.
We write D'(Q) for the set of distributions on €.

(ii) A sequence (Of)ren of distributions is said to converge to a distribution
O, if it converges pointwise,

Vi € D(2): Ok(p) — O(p).

3.2.8 Ezample. (i) Let f € Ll (), then

loc

CH) =/Qfs0
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defines a distribution and the assignment
f — 0 f
is injective, as you can check as an easy exercise.

(ii) For z € Q the map
0-: D(Q) > R
¢ = p(z)

is a distribution, the so-called Dirac-delta distribution.
(iii) Let n € C°(R™) be a mollifier, then the family

ne(z) =¢"n (%)

is also called the Dirac sequence of . The reason for this is apparent from
the property that for all ¢ € C2°(R"™) there holds

O (a—) (@) = /Rn ne(x —y)p(y) dy — o(x) = 02(p).

Hence
6775(1—‘) — 53;, e — 0.

Now we define the derivative of a distribution. This definition is motivated
from the rule of partial integration.

3.2.4 Definition (Distributional derivative). Let n € N, @ C R™ open, © €
D'(Q2) and « € Nj.

(i) We define the a-th distributional derivative of ©, © , € D'(2), by
0.0(p) = (=1)!O(p.0)- (3.5)

1
loc

(ii) In case that © arises from a function f € Li () as in Example 3.2.3, we

write
fa=1(0¢)a
and call f, the a-th weak derivative of f.

3.2.5 Remark. This definition is cooked up, such that it really is a gener-
alization of ordinary differentiation and at the same time a certain rule of
partial integration holds, namely (3.5). It generalizes differentiation, since for
f et (Q) c L. (Q) there holds

loc

(O05) alp) = (~1)(® / Fpa=" /2 o =0;.(2)

In this sense the distributional derivative of f coincides with the classical deriva-
tive.

10Classical partial integration.
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3.2.6 Example (Heavyside function). Let ¥ € L{ (R) be given by

1 t
9 (t) ::{ ’ >0
1, t<0

Then, as one may verify as an exercise, 19 = 2§y, where dg is the Dirac-delta
distribution in 0 € R.

3.3 Sobolev spaces

Definition and smooth approximation
3.3.1 Definition. Let n,m € N, Q C R™ open and 1 < p < oo.
(i) Define the Sobolev space of class (m,p) by
Wm™P(Q) :={u e LP(Q): uq € LP(Q) V{a) < m}

and equip it with the norm

Tl=

lllmpe={ D luallq

(a)<m
in case 1 < p < oo and

HU”m’oo,Q = max [[u a0
(a)y<m

in case p = 0o. On W™2(Q) we define the scalar product

(U, V)m,2,0 1= Z /u,av’a.
Q

(a)<m

(ii) Functions u belonging to Wlicl (Q) are called weakly differentiable and their
distributional derivatives are called the weak derivatives.

(iii) We define the local Sobolev space of class (m,p) by
WP(Q)={ue Ll (Q):ueWm™P(Q) VQ €N}

loc loc

(iv) We define W™ (2) to be the closure of C°(Q) with respect to || - |[m p,0-
This indeed is a generalisation of classical differentiation:

3.3.2 Exercise. Letn € Nand Q C R® and 1 < p < oo. Then

C™(Q) € WIP(Q)

loc

and for (o) < m the a-th weak derivative of a function v € C™() can be
represented by!! by the classical a-partial derivative d,u.

11je. is up to measure zero given by
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3.3.3 Proposition. Let nym € N, Q C R” open and 1 < p < oo. Then
W™P(Q) is a Banach space and for p =2 it is a Hilbert space.

Proof. Let (ug)reny be a Cauchy sequence in W™P(Q)). In particular it is a
Cauchy sequence in L?(Q2) and hence has a limit v € LP(2). Furthermore for
all @ with (o) < m the sequence (uj ) is a Cauchy sequence in LP(f2) and
hence converges to some limit g, € LP(£2). There holds for alle test functions
p € C(Q), that

/g)aap: lim /uk,ago: (—1)<(l> lim UpP,q = (—1)<°‘>/u<p)a.

Hence we have calculated the a-th distributional derivative of u to be g, €
L?(©) and hence
u € WmP(Q)

and ug, — u in W"P(Q).
W™2(€) is a Hilbert space because the inner product (-,-), , ¢, induces the
Sobolev norm. O

Also for Sobolev functions we obtain a smoothing result, the proof of which
is an exercise.

3.3.4 Exercise. Let n,m € N, 2 C R"” open, 1 < p < o0, n a mollifier
with Dirac sequence (7.), v € W™P(Q) and u, their convolutions. Then for all
QO C Q with B B

Q' cQ, dist(Q,00) >0
there holds

tim e — 0 = 0.

Basic rules for calculation

Many properties of classically differentiable functions carry over to Sobolev func-
tions due to these approximation properties. We prove some of them now.

3.3.5 Proposition (Product rule). Letn € N, Q C R™ open, 1 < p,p’ < 00
and % + ]% =1. Let u € WHP(Q) and v € WHP (Q). Then

uv € WHH(Q)

and
D(uv) = Du-v+wu- Do.

Proof. By symmetry we may assume p < co. Let ¢ € C2°(Q) with
suppp C Q' € Q

and let e < dist(Q2',99). Let u, be the convolution of v with a Dirac sequence.
Then there holds

/ (pue)v,; = —/ (PUe,iV + Uep V).
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Taking the limit ¢ — 0 and reverting £’ back to £ we obtain

Yo e C(): / pluv,; +u,v) = —/ UVP ;.
Q Q
This proves the product rule and from Holder’s inequality we get
D(uv) € L*(Q).
O

3.3.6 Proposition (Chain rule). Letn € N, Q C R™ open, 1 < p < oo and
g € C1(R) with bounded derivative. Let u € WYP(Q). Then, if gou € LP(),
we have g ou € WHP(Q) and

D(gou) = ¢ (u)Du.

Proof. Let p € C(Q2) and ' € Q, such that ¢ € C°(Y). Let ue € C*°(Q)
be the convolution with a Dirac sequence 7., such that

lu = uell1,1,00 = 0

and
(e, Due) — (u, Du) a.e

Then g o u. — gowu in L'(Y'), since g is uniformly Lipschitz continuous and
hence

[ @owes=tin [ Gouwspi=tim (- [ dwuse) o)

Q/ —0
There holds ¢'(ue) — ¢'(u) a.e. and |¢’| < L. Hence
o9’ (ue) Dul < L|Dul|¢].

Dominated convergence implies
/Nguu&w @ iel < [ 1/ es = )l
+lﬂ¢ma—ymemwr»a

(3.6) implies the chain rule. g ou € W1P() follows immediately. O

3.3.7 Proposition. Let n,m € N, Q,Q C R™ open and 1 < p < oo. Let
u € W™P(Q) and ¢ = (&) € C™(Q,Q) be a coordinate transformation, such
that ¥ and ¥~' have a bounded derivatives up to order m. Then the map
@ =wuovy~! belongs to WP (Q) and there holds

;= (ugo w_l)l”,kiv (3.7)

where (z¥) denote the component functions of Y1, i.e. ™ 1(Z) = (2F(Z)).
Furthermore there holds

[l .00 < €lltllm,p,0-
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Proof. First suppose m = 1. Let ¢ € CSO(Q) and Q' € Q, such that ¢ €
C(p(Q')) and ue — w in WH1(€Q') an approximation by convolutions with a
Dirac sequence. Define

Te = ucotp™ L

Then

~ k
Ue,i = Ue kT ;-

Due to the transformation theorem we have i, — @ in L'(¢(€’)) and
Ue,j — u;gxkl

in L'(1(Q)). Hence

/ Uy ; = lim Uep,; = — lim ue,kxigo = —/ u)kxigo.
$() =0 Sy ) =0 ) P()

By the transformation theorem and the boundedness of the Jacobians we
obtain
||a||1,p,§~2 < cllull1p.0

in case p < 0o, while in case p = oo this estimate is trivial. For m > 1 we
proceed by induction. Let the result be valid for m > 1, then by (3.7) we obtain
that

;3 € WNhP(Q)

with the estimate

||a,i£fk ‘mfl’p’ﬂ < clugllm-1p0 < clltflmpo-
Due to
;= 2", 2,

an inductive use of the product rule and the boundedness of all derivatives of
1, we obtain the desired estimate. O

3.3.8 Lemma. Letn €N, QCR" open, 1 <p<oco andu € WHP(Q). Then
ut = max(u,0), u~ = min(u,0)

are in WHP(Q) and there holds

Dut — Du, u>0
0, u<0’

Vi2+e2—e, t>0
0, t<0.
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Then g. € C1(R) and |g/| < 1. Since g.(0) = 0, we have g. ou € LP(Q) and
hence the chain rule implies

U == geou € WHP(Q)

and

uDu
, >0
Du, = gi(w)Du = § Vet Y
0, u < 0.

Let ¢ € C°(R2). Then, due to 0 < u, < u and the dominated convergence
theorem,

uto; =lm [ up,; =—1lim [ uc;p
Q ’ e—=0 Jo ’ e—=0 Jo

. U ;
= —lim :

=0/ {us0p Vu? + a2’

= —lim

uu;
0 Jq, /7u2+62X{u>0}§0

- / X{u>0}U,ip-
Q

Using u~ = —(—u)™ the result for v~ follows. O

3.3.9 Exercise. Let n € N, Q C R open, 1 < p < oo and u € WHP(Q).
Then for all ¢ € R there holds

D) fu=cy =0

almost everywhere.

Theorem of Meyers-Serrin

The main feature of the previous proofs is that we have always approximated
Sobolev functions locally by smooth functions. Historically, an important step
in the theory of Sobolev spaces was that actually

O (Q) N W™P(Q) © W™ (Q)

is dense.!?

3.3.10 Theorem (Meyers-Serrin). Let n,m € N, Q C R™ open and 1 < p <
00. Then for all u € W™P(Q) there exists a sequence (ug)ren i C(2) N
Wm™P(Q), such that

||uk — U”m,p,Q — 0.

12Before the 1960’s it was also common to define Sobolev spaces as the completion of
{u e C=(Q): ||lullm,p,0 < oo}

under the || - ||;,,p,0 norm. Those spaces were then called H™P(). Since obviously there
holds H™P?(Q) C W™P(Q), this theorem shows that H™P(Q) = W™ ?P(Q). This result is
due to Meyers and Serrin and appeared in the beautiful paper H = W, cf. [12].
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Proof. Let (€2;);jen be an exhaustion of , i.e.

Q; € Qy1, Q= U Q.
jEN
Let U; = Qjﬂ\Qj,h where Qyp = Q_; := (). Let (p;) be a countable partition

of unity for  according to Theorem 1.3.8. Let u € W™P?(§2) and € > 0, then
for each ¢ there exists j; such that

supp(p;u) C Uj,.
Let
h; < min(dist(U;,, 082), dist(supp(¢su), 0Uj,)),
such that for the h;-convolution of p;u we get

€

Ipiw)n; = piullmpn = [l(@it)n; = piullmpu;, < 5

Defining
v(@) = 3 (prn, (@),

€N
which is a fixed finite sum as long as x ranges in any given Q' € Q, we see that
v e C®(Q)NWm™P(Q). Furthermore

lo = wllmpe < Y N(pin, = itllnpa <e
€N

Hence C*°(2) N W™P(Q) is dense and the proof complete. O

Difference quotients

Soon we will see, that the space in which we search a solution of
Au=f

is Wh2(Q), for example when f € L?(Q2). Of course it is then natural to ask,
whether the solution is actually W?22(Q), since this would be expected from
counting the orders of derivatives. Since there is no way to directly estimate
the second weak derivative of u in L?(£2), simply because it is not known yet to
exist, we will instead look at difference quotients. The crucial results concerning
difference quotients will be deduced in the sequel.

3.3.11 Definition (Difference quotients). Let n € N, Q C R™ open and u €
R, Let Q' € Q and 0 < |h| < dist(Q’,09), then for 1 < i < n we define the
difference quotient of u with stepsize h in direction e;, Abu € R?, by

i () = u(z 4+ he}:') — u(;v)

3.3.12 Lemma. Letn € N, Q C R" open and 1 < p < co. For QO € Q,
0 < |h| < dist(§Y,00) and 1 < i <mn,

Al LP(Q) — LP(Q)
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is a continuous linear operator and

. 2
[ALullp0 < mllu p,Q-

For u,v € L?>(Q) there also holds
<A2u, U>27Q = 7<u> Ai—hﬁU>27Q
if v has compact support in .13

Proof. The first statement is obvious. In case p = 2, w.l.o.g. let supp(v) C .
Then

(Aju,v)20 = / ule he];) — u(x)v(x) dzx

=1 [ wtethegn@) o= [ @t da

1 1

T h /Q,Hbei u(y)o(y — hei) dy — / u(y)o(y) dy

v(y — he;) —v(y)
—/QU(y) = dy,

where in the last step we have used that supp(v) C €. O

The following lemmata are the crucial results for difference quotients in the
context of Sobolev spaces.

3.3.13 Lemma. Letn €N, Q CR" open, 1 <p < oo, uec WHP(Q), ' € Q,
0 < |h| < dist(,09Q) and 1 <i <n. Then
1AL ullp.er < lwillpe
and A
li A »=0.
Jim [l — Al = 0

Proof. Without loss of generality assume i = n. We use the notation

2 1 nfl).

(x,...,x
First suppose u € C1(Q) N W1P(Q). Let = € (.
1 z,+h
puw) = [ wa@ d

n

Tn+h
/ un(Z,t) dt
xr

n

and thus using Holder’s inequality,
P

|Apu(@)|” < [n]7"

Tn+h
< B[P / (2, D) dt
T

n

Tn+h
- |h|*1/ |u.,(2,)[P dt.
x

n

131In this equality u and v are extended to R™ by zero.
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Thus we have

h
/Q/ |Apu(z)Pdz < |h\—1/0 /Q (&, 2™ + )P dadt < [Jun]l? g

By Lemma 3.3.12 both sides are continuous with respect to W1 () convergence
and hence the result holds for general u € WP(Q).
For the second claim let € > 0. Choose v € C*(Q2) N W1P(Q) such that

€
o=l < 5.

Then

[un = Apullp,o < [lun = vallpo + v — Apvllpe + [[AF (u = v)|[p0
and hence

limsup ||u,, — Apullp.o < e+ limsup ||v, — ARv|po =€,
h—0 h—0

since for C'-functions the difference quotients convergence locally uniformly to
the derivative, due to the estimate of the remainder in Taylor’s formula. O

The next lemma is valid for v € LP(Q2) with 1 < p < oo, but we only prove
it for p = 2 in order to keep the required knowledge from functional analysis at
a minimum.

3.3.14 Lemma. Letn € N, Q C R" open, u € L?(Q), ¥ € Q, 0 < hy <
dist(Y,09Q) and 1 <i <n. Suppose

V0 < |h| < hg: ||A}lu||2,9/ <ec.

Then the weak derivative u; exists and

lwillz0 < c.
Proof. L*(€)) is a Hilbert space. Thus there exists a sequence hy such that
Aj u—ve L)

and .
loll20r < liminf [ A}, ullo0r < .

Let ¢ € C° () and pick Q" € €, auch that ¢ € C2°(Q”). Then
()20 = Tim (A, u, )2 0r == lim (u, ALy @ or = = (u,9)

Thus v = u ;. O

3.4 Embedding and compactness theorems

In order to show that a sufficiently regular weak solution is actually differen-
tiable, we need so-called embedding theorems for Sobolev spaces. Among other
statements they imply that

Wg™(Q) € CH(Q),

where k = k(m,p) and m is large enough. This will in turn yield classical
solutions to our PDE.
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3.4.1 Theorem. Letn €N, Q CR" open and 1 < p < oco. Then:
(i) If 1 < p < n, there holds

Wo P () < L7 ()
_ 1

with + =1
p p

% and there holds
lullp- 2 < el Dullp,o Vu € WgP(R),

where ¢ = ¢(n,p).

(ii) If @ € R™ and p > n, there holds

Wy P () = CO (@)1
with o« = 1 — % and there holds

[ulo.a.0 < cllDullpo Vue Wy (@),
where ¢ = ¢(n, p,diam()).
Proof. (i) We show

3e = e(n,p) Yu € Wy P(Q): |Jullp-0 < c|Dullp.q-

It suffices to show this for u € CL(R™). Let first p = 1 and = = (2, 2%) for all i
There hold

7

@< [ Juaaiolar

o0

Jufa)| 7 < 1_1 (/ |u,i<azi,t>|dt)"il

and hence

/R\u(xnﬁdxl < (/R|u,1(:z:1,t)|dt>"il/Ri_f[Q</]R |u,i(£i,t)|dt)nildx1.

The generalized Holder inequality implies

/ |u(x) tdyt < (/ |U,1(;%1,t)|dt> H (/ |u,i(;%l-,x1)|dxldx1) .
R R R2

i=2
For n = 2 this already implies

[l < [l
R2 R2 R2

u72|.

M For linear subspaces V, W of a vector space E, equipped with different norms, the symbol

VoW
means that V' C W and the inclusion map is continuous.

15For elements u € Wol’p(Q) it has to be understood to mean that one function representing
w is in C%*(Q) and satisfies the estimate.
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For n > 2 we repeat this argument to obtain

e
R2

1

1
n—1 n—1
rdptda? < (/ |u72(i2,w2)|d:v2dx1) (/ u,l(:ﬁl,xl)uxldx?)
R2 R2
n 1
. H (/ |u7i(§3i,xi)|dacidxldm2>
i=3 \WR3

Successive integration implies

n—1

n Z%T n—1
() = (o)
/R" 11;[1 = R

Vu € C(R™): [|ull 2p mn < [[Dullype.

n—17

and hence

Now let 1 < p < n: Define

n—p
Then
v = |u|' € C}(R™)

and applying what we have just proven, we get

T
/mms(/ |Dv|) .
R’VL R’H,

n(p—1)

D] < tlu| 5" Dyl

We calculate

and deduce

n(p—1)
ol e < [ 1l 0l < jul, ([ 1o
R7l Rn

Inserting |ul® gives

p—1

np P
n—p

[[ullpr,rn < t[| Dullp,n-
(ii) We will show

Yu € Wy (Q): |ulo.a.o < cl|Du

p,§2-

Let 21,22 € Q, 0 < p = |#1 — 22| and = € B,(2$*2) = B,. Then for u €
Cl@):

u(z) —u(x;) = /0 %u(ajz +t(x —x;)) dt

= /0 ug(z; +t(z — 961))(901C — xf) dt

1
< 2p/ |Du(z; + t(x — x;))| dt.
0

16extended to R™ by zero
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Thus, with possibly varying constants ¢ = ¢(n),

£ umut

P

1
< cpl_"/ / |Du(x; + t(x — x;))| dedt
o /B,
1
:cpk”/ t*”/ |Du(z)| dzdt
0 B
1-n ! —n nk=l pp=l
<cp tp" m " dt]| Dullp e
0

1
= Cpl_%HDUHp,Q/ tv dt
0

= c(n,p)p" "7 | Dullp.0-

u(zy) — ]{B u

P

Finally

lu(z1) — u(w2)] < +

]{5 u— u(ws)

P

< d[Dullp,ofer = zo|*

with a =1 — %.
Choosing x5 € 99 we find u(x2) = 0 and thus

lulo.o < ¢||Dullp.a(diam Q)*.

For u € Wy () choose an approximating sequence (i, )nen in C1(Q), then by
the previous estimate (un)nen is a Cauchy-sequence in C%2(Q) and has a limit
v € C%¥(€). Since for almost every x and a subsequence there holds

un () = u(z),
v is a Holder-continuous representative of u and satisfies the estimate. O

If we relax the target space of these embeddings a little bit, we even obtain
compact embeddings.

3.4.2 Lemma (Interpolation). Letn € N and Q C R™ open.
(i) If 1 <p; <p < pa < o0 and

1 1-—
-2 oz7 0<a<l,
P D1 b2

then
ullp.o < lullg, ollull, & Vu € LPL(Q) N LP ().

(i) If0 < B < a <1, then

B _B _
[ulpo <2782 gluly o™ Vu € CO¥(Q).
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Proof. (i) There holds
S
apy + (1 = a)py

/ |u‘p = / |u|p1 aszr(ﬁ)Eu)Pl |u|p2 upgi:(lalz;l)pl
Q Q

apy (A—a)py
apa+(1—a)py apy+(1—a)py
< ([ up .
Q Q

|wm—u@>:<wm»—mwﬁ>z

p= (apip2 + (1 — @)p1p2).

Thus

|z —y|? |z —yl@

:Cmm—ww

|z —y|*

u(z) = uly)

_B, .8 1-£
<2 < [ulg qlulgo™

3.4.3 Theorem. Letn e N, Q &R" open and 1 < p < oo.
(i) If 1 < p < n, then the embedding
Wo?(Q) — LU(9)

71 11
with = > = — = 48 compact.
a7 p n p

(i) If p > n, then
WoP(Q) < C%F(Q)
with B <1 — % s compact.
Proof. Due to Corollary 3.1.18, Theorem 3.4.1 and Lemma 3.4.2 the second

claim is true. To prove (i), suppose that (uj)ren is a bounded sequence in
WyP(Q). Choose a sequence (vy)gen in C2°(Q), such that

[ = vrll1p0 < -
It suffices to prove that (vg)ken has a convergent subsequence in L9(2) and
by Lemma 3.4.2 it suffices to show this for ¢ = 1. We use the Kolmogorov

characterisation, Theorem 3.1.19. The boundedness already holds in L?" (£2)
and thus also in L!(Q). We prove the continuity in the mean.

1

d
vp(r+h) —wvp(x) = | —ve(x+ th)dt
o dt
1 .
- / i ( + th)hidt
0
and thus
1
limsup/ |vg(z + h) — vg(2)] de < limsup \h|/ / |Dvg| = 0.
h—0 n h—0 0 Rn
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Compactness theorems of higher order follow and shall be proved as an
exercise.

3.4.4 Exercise. Let n,m € N, Q € R"” open and 1 < p < co. Then there
hold

(i) If mp <n and ¢ < ——2— then

n—mp’
Wg () < L)
is compact.

(ii) If0 <k <m— 2, then
WP(Q) — C*(Q)
is compact.

Due to its importance, also historically, let us write down a corollary of the
previous compactness theorem, which is known as Rellich’s embedding theorem.

3.4.5 Theorem (Rellich). Letn,m €N, Q € R" open and 1 < p < oo. Then
WP (Q) = Wy P (Q)
18 compact.

Proof. Induction, m = 1. If p < n, then
n(p—c)
Wy P (Q) = WP~ (Q) < L7-G-9(Q)
is compact for small € and there holds

np—¢ .
P n—t-9 ©

If p > n, then B
Wy P(Q) < C¥' 75 74(Q) — LP(Q)

is compact for small e. Suppose the result is true for m > 1, then
DWg™hP(Q)) — WP (Q) <= W5~ 7(Q)

is compact. So let (u)ren be bounded in WJ*t'P(Q). Then (ux)ren and
(Duyg)ken are bounded in Wy""(2) and hence a subsequence is a Cauchy se-
quence in W™m=1P(Q)

lur — willm—1p0 =0, [[Dur — Dul[m-1,p0 — 0.
Then

e —wll}, o = Z [[(ue — w) allp g — 0
(a)<m
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3.5 Extension of Sobolev functions

Since in the end we want to solve the Dirichlet problem, we have to discuss
boundary values of Sobolev functions. We prepare this with several results,
amongst which there is a generalisation of the embedding theorems.

3.5.1 Lemma. Letn € N, Q € R" open with C™-boundary or 2 = R and
1 <p<oo. Then C*®() is dense in W™P(Q).

Proof. Cover 992 by finitely many open sets (U;)1<;<n, which lie in the domains
of local straightening functions (¢;)1<;<ny with image R’ and define

N
Uo =\ | Ur.
k=1

Choose a finite partition of unity (7;)1<;<m for

(Ui)ogigN )

where
suppn; C Up, 1<5<1

and
suppn; CU;, 1+1<j<m

for suitable 7. It suffices to prove that

w = wj = un; oy !
can be approximated by functions ( f,z) ke in C°°(R"), since in this case we first
pick a sequence (gi)ken in C2°(£2) with

l
ge = Y mju € Wy (Q)

j=1
and then we calculate with the help of Proposition 3.3.7:
Hu — gk + Z Ugf/i © wiHm,p,Q

j=l+1
l

m
< D o miu—gillmpo + 1Y ju—n,fL 0 ) lmpo

j=1 j=l+1
— 0

for k — oo. So let us prove that w € WP (R}) can be approximated by a
sequence (fx)ren in C*°(R?). Define for h > 0,

wp(x) = w(x + 2hey,),
then wy, € W™P({a"™ > —2h}). For small e the convolutions
w € O (m)
approximate wy, in WP ({z" > —h}). Furthermore w; — w in W™P(R%),

since LP-functions are equicontinuous in the mean. O
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3.5.2 Lemma (Lions-Magenes). Let ¢y, ..., Cm41 be solutions to the linear sys-

tem
m—+1

S (-1 ke =1, 0<j<m.
k=1

For u € W™P(R?) N C>®(R?),
m—+1
(&, ") = Z cpu(Z, —kz™), 2" <0,
k=1
defines an extension of u to R™, such that u € C™(R™) and
[@llm.p e < clltllmprr, ¢=c(m,n,p), 1<p<oc.

Proof. Let x € R™. Then there holds

k=1 =1
Hence -
@€ CY(R™)
and
lim Da(z,2™) = lim Da(z,z").
™ —0+4 " —0—

This implies % € C'(R"). In exactly the same way one can iterate this process
up to m derivatives to show that @ € C"™(R"™). To prove the estimate, calculate
for an arbitrary multi-index |5| < m:

p

m—+1
||ﬂ75 g’z,p,R" = HuBHf}TLJL]Ri +/ (Z cku(i, kxn)> dx
R™ k=1 B
m—+1
< sl + > ck]gmp/ 5 (&, —ka™)|Pda
k=1 R

S c(m, nap) ||’U/||m,p,]Ri .
O

Using a partition of unity, we can prove an extension theorem for Sobolev
functions.

3.5.3 Theorem (Extension of Sobolev functions). Let n,m € N, Q € R"
open with C™-boundary and 1 < p < co. Then for any open set Qg with Q € Qg
there exists a bounded linear extension operator

E: W™P(Q) — Wi (Qo),
such that
Eujg=u
and
| EUllm,p.00 < clltflmpa,
where ¢ = ¢(n, m,p, 00Q, dist(£2, 0Q)).
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Proof. We may assume u € C°°(2). Cover dQ by finitely many open sets
(Ui)i<i<n with U; € Qo, which lie in the domains of local straightening func-
tions (1);)1<i<n with image R’} and choose a finite partition of unity (1;)1<j<m

for
N
<Ui,Q\ U Uk> :
k=1 1<i<N

Then for each j, supp(un;) C U; for some . Hence, defining
E(un; o) € WP (R™)M
to be the Lions-Magenes extension of un; o1, 1 we deduce
IE(un; o 47 llmpre < cllun; o 97 lmprs-

Let 1 < j <k be those indices with

N
suppn; C 2\ U U,.
r=1

Define
k m
Eu = anu + Z E(un; o¢i_1) 0 Y;.
j=1

j=k+1
Then Eu € Wy"? (), Bujq = u and
1Bl p.00 < cltt]lmp.0-
O]

3.5.4 Corollary. Letn,m € N, Q2 € R” open with C™-boundary and 1 < p <
00. Then there hold

then

. np
(i) If mp <n and q < n—mp
W™P(Q) — LI(Q)

1§ compact.
(it) If0 <k <m— 2, then
W™P(Q) — C*(Q)

18 compact.

Proof.
WmP(Q) 2 WP (Qq) — L9(Q) 2 LI(Q)

is compact, and similarly for the embedding into C*. O

1"Note that E can be continuously extended to W™P(R7).
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CHAPTER 4

ELLIPTIC EXISTENCE AND
REGULARITY THEORY FOR
WEAK SOLUTIONS

4.1 Weak solutions to linear equations
Following our previous philosophy that we should search for a solution of, e.g.
Au=f (4.1)

in a larger function space, this equation must of course be understood in a weak
sense. The broadest sense that we have considered so far is distributional i.e.
we should consider (4.1) to be defined by

Vo € C°(2): /QuA@=/thp,

where f € L{ (). In principle we could try to find a solution u € L{ () to
this equation. However, we already announced, that we want to use the elegant
Hilbert space method. Since L] (£2) is not a Hilbert space, we must modify the
setting a bit and hence we will allow u € Wy"?(€2).

This modification also includes a new kind of differential operator. In the

linear theory we have so far considered elliptic operators of the form
Lu = a"u;j + b'u ; + du.

Since now we only allow u € WO1 ’Q(Q), the only way to make sense of this is the
distributional one, i.e. it has to be understood as

/apLu: —/(aijgp),ju,i—i-/ b"uﬂwp—i—/ dup.
Q Q Q Q

Since this form would require some regularity of a*/, which we do not want to
assume in general, it is more convenient to work with the following structure.

4.1.1 Definition (Divergence form operator). Let n € N and 2 C R™ open.
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(i) Let
T'cR*"xRx Q.

A divergence form partial differential operator of second order in Q is a
map
Lap: AC WLQ(Q) — D/(Q)

U (Ai(Du, u,-)).; + B(Du,u, ),

where for 1 <i <n, .
A B: T — R

and
A= {uecW"?(Q): (Du(x),u(x),z) €T for a.e. x € Q,

AY(Du,u,-), B(Du,u,-) € Ll _(Q)}!
is the set of (A, B)-admissable functions.
(ii) L4 p is called elliptic in u € A, if
DA
Op;

(A (Duta) e, ) = (G- (Dute).ulo).a)

sym

exists and is positive definite for almost every x € . For a set S C A,
L, p is called elliptic operator in S, if L4 p is elliptic in all u € S.

(iii) Let S C A. L4 p is called strictly elliptic in S, if
N> 0Vu e SVY(E) €R: AY(Du,u, )& > NEP
and uniformly elliptic in S, if
0 <A< AVueSV(E) R : MNEP < AY(Du,u, )€ < AJEP.
4.1.2 Example. (1) With
Vu

VI+[Va?

we see that the minimal surface operator is in divergence form.

A(Du) =

(ii) A general linear divergence form operator has the form
Lu = (a"uj + a'u) ; + b'u,; + du

with coefficients a*/, a’,b*,d € L2 (), 1 < 4,5 < n. However, we will later
assume coefficients in L°°(£2) in order to ensure that L maps into the dual

space of Wy7>(Q).

We can now prove an existence and uniqueness result. For the uniqueness
we have already seen that we have to impose boundary conditions in general.
This is incorporated in the weak setting by restricting the domain to WO1 2(Q)
We follow [5, Ch. §].

1Recall how an L}

1oc ()-function acts as a distribution.
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4.1.3 Lemma (Maximum principle for weak solutions). Letn € N, ) € R

open and
L: Wy 2 () = D'(Q)

Lu = (a"uj + a'u) ; + bu,; + du
with coefficients in L>(Q),

/(dw Cdie) <0 V0<pe Q)
Q

and

V(&) € R™: a¥ &85 > Mef
with A > 0. Then L is injective.
Proof. Step 1: We show that for u € W, *(Q) and any k > 0 there holds
vg = max(u — k,0) € Wol’Z(Q).

Therefore choose a (@ )men of functions in C2°(£2) which approximate u in
Wh2(Q) and pointwise almost everywhere. Due to Lemma 3.3.8 the functions

U = max(p, — k,0)

are in W12(£2) and have compact support in Q. Furthermore they approximate
Vi

o — vilZ0 < /Q ol 50

and
/ |D (max(u — k,0) — max(¢.m, — k,0)) ?
Q

= /Q|DUX{u>k}*Dme{wm>k}|2

= /Q [(Du — Do) X {om>ky + DuX(usk} — X{pm>kp)]?

— 0

due to the dominated convergence theorem.
Step 2: We prove that L is injective, so let Lu = 0. Then for all £ > 0

0= Lu(vg) = — / (aijuyivkyj + aivk,iu) + / (biuyivk + duwy,)
Q Q
= —/ aijvk,ivk,j —|—/(ai + bi)u,ivk —|—/(duvk - ai(uvk),i) (4.2)
Q Q Q
<2 [ D + ol ooy [ D0 o
Q

and hence
[Dvkllz,0 < cllvklle, fusky- (4.3)

Applying the Sobolev embedding theorem in case n > 3, we obtain

1
||vk||%’9 < c|lvg 2, {u>k} < C||Uk||f+12,95n({“ > k).
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Assuming vg # 0 for some k, we obtain
LM{u>k})>c "

This implies that 4 must be bounded, since if it was unbounded, then v # 0

for all £ and
/ lu|? > / lu|?> > ¢ k2.
Q {u>k}

But this implies u ¢ L*(Q), a contradiction. Starting from (4.2) we can repeat
this calculation with {u > k} replaced by {Dvy, # 0} and obtain for all 0 < k <
sup u that

L"({Dv, #0}) > c ™.

Since {Dvy, # 0} C {u > k} and Dv;, = 0 almost everywhere on {u = supu},
we obtain

¢ " < L'{Dvg #0}) < LM({k <u <supu}) — 0,

as k — sup u, contradiction. Hence v, = 0 for all £ and thus u < 0.
Step 3: n = 2. Starting from (4.3) and applying the Sobolev embedding
with some 2 — e < p < 2 for small €, we get

vk llp= 2 < c||Dvkllp.a < cl|Dvkll2.0 < cllvkll2, fusky < cllvillp L™ ({u > k})¢

and the proof can be continued as in case n > 3.
Step 4: n = 1. Again from (4.3) we obtain, using the embedding into Holder
spaces,

1
2

1
[VE]0,0,0 < cl|Dvgll2.0 < c </ Uk2> < cJvklo,a.0L" ({u > k})?2
{u>k}

and the proof can be finished as in the previous steps.
This proves u < 0 in any of the cases and by replacing u by —u, we obtain
u = 0. O

4.1.4 Theorem (Existence of weak solutions). Letn € N, ! € R™ open and
L: W32 () = D'(Q)
Lu = (a"uj + a'u) ; + bu,; + du

with coefficients in L>(Q),

/(dcp—aigo,i) <0 YO<pelQ)
Q

and N
V(&) € R™: a6 > M¢)?

with X > 0. Then L is a continuous linear isomorphism onto Wy*(Q)" with
continuous imuverse.
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Proof. Step 1: First we prove this for a modified operator
Lu=Lu— ou,

where a sufficiently large 0 € R will be chosen later. The map

Lu € D'(Q)
is given by
Lu(p) = — / (Y +a'u)p; + / (b + du)p / oup
Q Q Q
and hence R
[Lu(p)] < (¢ + a)[ull2.cllelh 2.0 (4.4)
Hence the map Lu, restricted to the dense subspace (C°(Q), || - |]1,2,0) is con-

tinuous and thus extends uniquely to an element Lu € WO1 ’Q(Q)’ . Now define a
bilinear form on W, *(Q) by

B(v,u) = Lu(v).

Since (4.4) carries over to v € W, *(Q), B is bounded as a bilinear form. Fur-
thermore — B is coercive, provided ¢ is large enough:

—B(u,u) = / auu i+ (@b — b )uu — / (d — o)u?
Q

Q

€ 1
> M|l ~ o~ bl (510020 + 5 2o

= (ldllce,0 = o) [ull20

A A
> 2D 2
> 2|| ull2,0 + 2HU||2,Q
> 2y
—|lUu
=7 1,2,Q

provided that first € is chosen small enough (in dependence of the data of the
problem) and then o is chosen large enough. Due to Theorem 3.1.16, for every
¥ € Wy (Q)' there exists a unique u € W, *(2), such that for all p € W, *(Q)

L(u)p = B(p,u) = P(p).

Hence L maps bijectively to WO1 2(Q) and due to the coercivity and the bound-
edness of —B this map is also continuous with continuous inverse.
Step 2: We show that the map we added,

I: W2 (Q) — W2 (Q)

ur—>I(u):/ﬂu~,

is compact. But I is just the restriction of the corresponding map defined on
L2(Q) to the compactly embedded? subspace W, ?(Q). Hence I is compact.

2Rellich, Theorem 3.4.5
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Step 3: Now we prove the claim of the theorem for L. Unique solvability of
Lu = v is equivalent to unique solvability of

Lu+ olu =1,
which is in turn equivalent to unique solvability of
w+oL 'u= i_lzp.

Since [2‘1 o I is compact, the Fredholm-alternative, Theorem 3.1.14, says that
id +(0 L= o) is surjective if and only if it is injective. However, the uniqueness
of solutions of )
u+oLtol=0

follows from the uniqueness of solutions of Lu = 0, Lemma 4.1.3. O
4.1.5 Remark (Sturm-Liouville problem). Since we did not restrict the dimen-
sion, the previous results contain a partial solution to the so-called Sturm-
Liouville problem, which is a Dirichlet problem for second order ordinary dif-

ferential equations: On an interval I = [a,b] let three functions p,q € L>(a,b)
and w € C'([a,b]) be given, such that

p>c>0, w>0.

The Sturm-Liouville problem asks to find pairs (u, ), which solve the eigenvalue
problem
—(pu) + qu = Awu

u(a) = u(b) = 0.
Since w € C1([a, b]), we can rewrite this equation to
/
- (Bu’) - %w'u’ + Ly =
w w w

and we see from Theorem 4.1.4, that for

there are no nonzero solutions. Later we will also prove the existence of non-
vanishing solution for certain A which violate this condition.

4.2 Regularity of weak solutions

We achieved existence and uniqueness of a solution u € WO1 2(9) to
Lu=f

for a large class of right hand sides, namely for all f € WO1 ’Q(Q)’ . The aim of
this section is to deduce higher regularity of u, once that f is more regular.
These estimates divide into interior estimates and boundary estimates. For the
case f € L?(Q) we will not only achieve this for the linear operator L we have
treated in the previous section, but for more general nonlinear divergence form
operators, since the proof does not essentially make use of a linear structure.
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Interior estimates

4.2.1 Theorem (Interior W?22-estimate). Let n € N, Q € R"™ be open and
F €L (Q). Let A€ CHR™ x R x Q,R") satisfy

10:A(p, z,2)| < ch(ch + Ipl + 2]), [0-A| +[9,A] < ¢l

RR"XRXQ s measurable and satisfies for almost

for some ¢4 > 0. Suppose B €
every (p, z,x),

1B(p, z,2)| < ep(ch + [pl +|2]).
Let
Lap: Wy2(Q) = D'(Q)

be a divergence form partial differential operator of second order in Q, strictly
elliptic in Wy(Q) with ellipticity constant \g > 0. Let u € W (Q) be a
solution of the distributional equality

—div A(Du,u,-) + B(Du,u,-) = f.

Then u € W2’2(Q) and for all Q' € Q" € Q there exists ¢ depending on n, ck,

loc

ch, Ao, L(Q) and dist(Q,09Q"), such that

lullz2.0r < e(ch + b + lluli20r + 1 2.07)-

Proof. Let ' € Q" € Q and Aju be the difference quotient of stepsize h in
direction 1 < k < n,

u(z + heg) — u(x)

Afu(z) = ; . |h| < dist(%Y,09").

Due to the structure conditions of A there holds
A(Du,u,-), B(Du,u,-) € L*(R). (4.5)

We rewrite the difference quotient of the functions A*(Du,u, -),

AF AN (Du,u, -)

1 [td |,

= ﬁA’(tDuC + heg) + (1 — t)Du, tu(- + heg) + (1 — t)u, - + they) dt
0

= AY (Aﬁu),j +a'Afu+ b,

(4.6)
where

AV = /1 ?)Ai (tDu(- 4+ h) + (1 — t)Du, tu(- + h) + (1 — t)u, - + th) dt (4.7)
0

Dj
i/laAi z‘/laAi
aio 627 akioaxk’

where the integrand terms are also evaluated at the convex combinations as in
(4.7).

and
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Let n € C2°(Q"), such that
N =1.°
For |h| < min(dist(2”, 09), dist(supp n, 9")) choose the test function
v = —AF, (P Aku) € WE2(Q)

in the equality
/ AY(Du,u, v +/ B(Du,u,)v = / fot
Q Q Q
There holds
/QUQAﬁAi(AZU),i = - /Q 2, AF A Nju — /Q(f — B)AY, (1 Afu)
and hence by (4.6) we have for small ¢ > 0 that

/Q A (Abu) (Abu) ;

- / 2, AY (Aju) jAfu — / a' Afu(n®(Afu) i + 2, Afu)
2 Q

- / aj(n(Aku) i + 2 Afu) — / (f — B)A*, (n? Aku)
i’ : (4.8)

IA

2 .. ..
/Q %A”(Aiuh(ﬁﬁuw +2 /Q A i 5(Afu)?

ce c

+ 5 [PID@kR + 5 [ (@l Duf? + ()
Q € Jsuppn

€ 1 1

- D QAk 2 7/‘ 2 7/ B(D 2
5 [Ipeeat0R+ g [ 1P g [ BDuu

where ¢ = ¢(ca, ||, Ao, dist(2,0Q)). Due to the strict ellipticity we may absorb
and term on the right hand side which contains D(AKu), if we choose € > 0
small enough. Thus (4.8) implies

ID(AR )2 < e(ch + b + llullizor + [ fllz0),

where ¢ = ¢(ca, Ao, cp, L7(Q), dist (£, 0Q")). This completes the proof in view
of Lemma 3.3.14. [

4.2.2 Remark. For this illustration we suppose that B = 0. The next step
would be to deduce higher order estimates, once we know that the data of the
problem, A, f are more regular. The general strategy to accomplish this is to
apply the equation

—(AZ(Du,u, )),1 =f

3Existence follows from Theorem 1.3.7.
4Due to (4.5) the distributional equality carries over to functions in WOI’Q(Q).
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to a test function of the form

n=e,;j,
where ¢ € C°(Q). Since we already know that v € W22, partial integration
would yield an equation for w = u_; namely

/M .+87Ai -4 /f
Qapkw’kga’z 9z 8J<P17 ¥

and thus

_ LAiw +87Aiw_~_8714i —f,
ope " 0z oxi ) P

which formally is a divergence form equation as treated above. We would like
to apply the W?22-estimate to deduce that w € W22 and in turn v € W32,
However, the x dependence of the operator on the left hand side is now hidden
in the coefficients , ]
0A"  JA
Opr Opx

(Du(z), u(), z)

and similarly for the other coefficients.” However, the assumptions of Theo-
rem 4.2.1 are not met, since we do not know that these coefficients are differen-
tiable with respect to . To get higher regularity, more sophisticated techniques
are necessary and we will not perform this here. Instead we restrict to higher
regularity for linear equations.

4.2.3 Theorem (Higher interior estimates). Let n,m €N, Q €R" open and
fe W™ ). Forl<i,j<nletal a e C"(Q) and b',d € C™(Q)
and suppose (a'?) is strictly positive definite with ellipticity constant Xo. Let

u e W2 (Q) be a weak solution of

loc
= (a"u; +a'u) i+ bug +du= f,

then
W7n+2 2 (Q)

loc

and for all Q' € Q" € Q there exists ¢ > 0 such that

),

where ¢ depends on Xo, |a ;41,00 [my1,0, 10 lmy1,9; |dlmy1,0, £7(Q) and on
dist(€Y, 097).

[ullmy2.0r < c([[fllm.2.07 + |

Proof. By induction. For m = 0 this is Theorem 4.2.1, since
A(p, z,x) = a”(2)p; + a'(z)z, B(p,z,x) =b'p; +dz

and 4
|00k Alp, 2,2)| = |a'Lp; + a’yz| < ch(lpl +21),

|0-A] + 10 A| = |a'| + |a”] < c)

5Note that u not the unknown function anymore and fixed.
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and a% is positive definite. Similar estimates hold for B. Also note that ¢% =
¢4 = 0. Now let m > 0 and suppose the claim holds for m — 1. First of all
u e WmH’Q(Q) with the corresponding estimate. For 1 < k < n choose

loc
n=%®k
with ¢ € C2(€2). Then

/(aiju,j+aiU)n,i+/(biU,¢+dU)n:/fn
Q Q Q

and hence, with w = u,

/ (afiud' + aile’j + afku + aiw)cp,i + / (bfku,i + biw,i +d pu+ dw)p
Q Q

= /Qf,w-

Thus w=uy € Wﬁ)f(Q) satisfies
—(@w,; + a'w) i + bw +dw = fr 4 (afug) + (@) = biui — d
= F € Wi (@)

Hence by induction hypothesis w € W,"7?(Q). Let ' € Q" € Q”. Then

loc
wllm+1,2,00 < ([Fllm-1,2,07 + wl1,2,a0m).
There hold
[wlliz0m < lull22,07 < e[| fllzor + [lull1,2.07)
and
[Fllm—1,2,07 < ([ fllm2.00 + [ulmt1,2,07) < ([ fllm200 + [ulli,2,00).
Combining these estimates gives the claim. O

Due to Exercise 3.4.4 we obtain the following local regularity result.

4.2.4 Corollary. Letn € N and Q C R" open. Let u € Wlif(Q) be a distri-
butional solution to the linear problem

—(aYuj +a'u) ; +bu; +du= f,

where (a%) is locally strictly positive definite and f as well as all coefficients are
smooth. Then u € C*>(Q).

Proof. We know that u € W;"-*(Q) for all m € N. Let € € Q and choose a

loc

cut-off function n € C°(Q) with
77‘@/ =1.

Then nu € W™?(Q) for all m and hence u € C> (). O
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Boundary estimates

In this section we extend the previous regularity results to the boundary 9f).
Roughly, on a domain  with smooth boundary and with data smooth up to
the boundary, we want to conclude that a W, *() solution is of class C°°({2).
We proceed as in the previous subsection, proving the first step for general
divergence form operators and the inductive step for linear operators.

In order to prove boundary estimates, we have to transform the equation
onto a simpler domain. We use straightening of the boundary. Hence we first
have to calculate, how an equation in divergence form transforms under a change
of coordinates.

4.2.5 Lemma. Letn €N, Q,Q CR" open and ¢ € C(Q,Q) be a coordinate
transformation. Let f € Ll (Q) and A, B € RR"*BXQ et 4 € Wéf(ﬂ) be a
weak solution of

loc
—div A(Du,u,-) + B(Du,u,) = f.

Then i =uo~t € I/Vﬁ)f(@) is a weak solution of

~ div (V/det g(Dy() 0 A)(Di(-) Dy 0 v, 4, ) )
= (f = B(Da(-)Dy oy~ a,-))/det g,
where g is the Gramian matriz associated to 1.

Proof. Let ¢ € C>°(Q) and ¢ = ¢ o1). Then
| 2a6h(@) 0 VD@ DY o w7 3), (). 5) At 9(D) da
= /Q@,z'(w*l(f))Ai(Du(df (%), uo (&), 2)\/det g(&) di
- /<p7i(:c)Ai(Du(x),u(m),x) dzr
Q
- /Q (f(2) — B(Du, u, 2))p(z) da
= [ @) - BOUR DY 0 v @), 6@),3))e() Aot 90F)

Q
O

Due to this lemma it will be possible to reduce the boundary estimates to
the canonical situation of a straight boundary; in the sequel we use the notation

BF(0) = B,(0)n{z" >0}, p>0,

and B} (0) for its closure. After the transformation we will not be in the situa-

tion that the transformed solution w is in W’ 2(BJF(())), but it will only be zero
on the flat boundary portion of Bf(0). Hence we have to define what this is
supposed to mean.

4.2.6 Definition (Weak boundary values). Let n,m € N, Q C R™ open and
T C 05 closed. We say that a function u € W™2(Q) equals 1» € W™2(Q) on
T in the sense of W™?2,

U\T=¢
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if u — 9 can be approximated in the W™2-norm by functions ¢ € C2°(Q\T).

4.2.7 Theorem (Local W?2-boundary estimates). Letn € N, 0 < p <1 and
2 + 1/mn + n .
f e L3(B;(0)). Let Ae CH(R" x R x BF(0),R") satisfy
10:A(p, z,7)| < (e + |p| + [2]),  [0-A] +0,A] < ¢4

+
XRx B (

for some ¢’y > 0. Suppose B € RF" 9 is measurable and satisfies for

almost every (p, z, x),
|B(p, 2,2)| < cp(cg + pl + |2))-

Let
LaB: W1’2(B:{(0)) — D’(B:(O))

be a divergence form partial differential operator of second order in BZ‘(O),
L4 p(u) =—div A(Du,u,-) + B(Du,u,-),

which is strictly elliptic in W2(BF(0)) with ellipticity constant X > 0. Let
u e WH?(BF(0)) be a solution of the problem

Lap(u)=f
U|{zn:0} =0 n Wl’g.
Then for all 0 < p; < p there holds
u e W**(B}(0))
and there exists ¢ depending on n, 0}4, 0}3, A, and p — p1 such that

[Ju

|2,2,B;r1 ) = o+ ch+ lully 2,5+ 0y T I1fll2, 54 0))-
Proof. For p1 < pa < p choose
n € CZ(Bp,(0), mB,, @ =1

We first estimate the difference quotient in horizontal directions, i.e. for suffi-
ciently small h we choose the test function

AR (P Afu) e Wy A(B(0)),° 1<k<n-1

Then
A S = [ (F = B)AY, @)

B/, (0)

As in the proof of Theorem 4.2.1 we write for 0 < h < dist(Bj, (0),9B,)

B, (0)

AK AN (Du,u, -)

1 [(td

=3 %A’(tDuC + heg) + (1 — t)Du, tu(- + heg) + (1 — t)u, - + they) dt
0

= AY(AFu) j +a’Afu+al,

6We leave this as an exercise.
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where

- L pAi
AY = g (tDu(- 4+ h) + (1 —t)Du, tu(- + h) + (1 — t)u, - + th) dt  (4.9)
o 9Dj
and ) ,
. [toAt . [TOA
@ = 0 62’ ’ G = 0 3xk7

where the integrand terms are also evaluated at the convex combinations as in
(4.9). We obtain

/ n2 AT (Aku) (Aku) ;

B, (0)

= - / 20, AY (Aju) ;AR u — / a’ Aju(® (Aju) i + 20, Afu)
B/, (0) BZ,(0)

- / b (P (Abw) s + 2 akw) — [ (F— B)AR, (2 Ak
B2, (0) B, (0)

N

2
N i ij
< / T A5 (Au) (D) +2 / Ay (A
B, (0) 2 B;, (0)
w5 [ @R+ [ @l Dl + ()
2 B;FQ(O) 26 Bt (O)

P2

€ 1 1
w5 [k [ Ay [ B,
2 /B0 2¢ /B, (0) 2¢ /B, 0)

As in the proof of Theorem 4.2.1 this implies
||D(AZU)||2,B,j1 0 = ol +cp + ||U||1,2,Bp+2(o) + Hf”z,B;r2 0))-

From Lemma 3.3.14 we obtain that Du is weakly differentiable in any direction
1<k<n-1and

> |

i+j<2n

uﬂ’j”Q,B;r1 (0) < 0(0124 + CQB + ||“||1,2,Bp+2(0) + Hf”g,B;r2 (o))'

To estimate u ,, we use the differential equation directly. Since we already
know from Theorem 4.2.1 that u € W22 (B;,(0)) and A is differentiable with

loc

bounded 9,A and 0, A, from the chain rule we obtain

QA DA A’
— Du,u, )u;; — —(Du,u,-) —
5pj ( u, u, )uﬂj ot ( u, u, ) B

(Du,u, )u; = f — B(Du,u,-).
Using @™ > A, we obtain almost everywhere

nn| < D Jugl + ch(ch + ul + |Dul) + | £ + ch(ch + |u| + [Dul).
i+j<2n

O

Similar to the interior estimates we prove higher boundary regularity. There-
fore we need the following lemma:
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4.2.8 Lemma. Letn € N, 0 < py < p and u € W*?(B}(0)) vanish on
{z™ = 0} in the sense of W2, Then for 1 <k <n—1, uy € WI’Q(B;;(O))
vanishes on {x™ = 0} in the sense of W12,

Proof. Let n € C°(B,(0)) with Mgy, o) = L then nu € W22(B}(0)). For
p2 < p1 < p and small h, the difference quotients

A (nu) € Wy (B, (0))

converge to (nu); in VVOLQ(B:{1 (0)) as h — 0, Lemma 3.3.13.7 Due to the
closedness of W01’2(B;‘1 (0)) we have

(nu) . € Wy (B, (0)).

Hence (nu) x vanishes on {z™ = 0}N B, (0) and hence the claimed result follows.
O

4.2.9 Theorem. Let n,m € N, 0 < p < 1 and f € W™*(B}(0)). For
1<i,j<nleta, a' € C"T(B}(0)) and b',d € C™(B}(0)) and suppose (a')
is strictly positive definite with ellipticity constant X. Let uw € WH2(BF(0)) be
a weak solution of

—(a"u; + a'u) ; + blu; +du=f
U|{rn:0} =0 n W1’2.
Then for all 0 < p1 < p there holds
m+2,2
ueWwmt (B;1 (0))

and
Vtllsa,2,5% 0 < € (1l 2,50) + Il 2,550 )

where ¢ depends on A, |aij\m+1,§27 |a’i|m+1,ﬂa |bi|m+1,ﬂ7 |d|m+1,0 and on p — p;.

Proof. For m = 0 this is Theorem 4.2.7, which implies

el 2,55 0y < € (Il 2,5 0) + 1 2,52 @)

Let m > 0 and suppose the result is true for m — 1. Let p; < pas < p. First of
all
+1.2/ p+
ue WmT2(B, (0))

with the corresponding estimate. Then, for 1 < k <n —1,

w=1uy € W’”’Q(B;'2 (0)),

"Note that the formal assumptions of this lemma are not quite met, since
dist(B£,(0), 0B (0)) = 0. But due to 1 < k < n — 1 we do not leave the domain of def-
inition of u and hence the proof of Lemma 3.3.13 carries over.
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from Lemma 4.2.8 we obtain w = 0 on {z" = 0} in the sense of W? on a
possibly slightly smaller set and w satisfies
—(a"w; + a'w) ; + b'w,; +dw = f + (afiu,j),i + (a’ju)i — byu; — d gu
= F e W™ (B (0)).
By induction hypothesis there holds
w e W™HH(B1(0))
and
10llr 255,00 < € (1Flnor255, 0 + 10l 2,8, 0)
and the proof can be completed as in Theorem 4.2.3. O

Combining all of the interior and boundary estimates by using a partition
of unity, we obtain the full W™2-existence and regularity theorem for weak
solutions, for which we can also include more general boundary values. This
is the main result of this chapter and the exact proof is recommended as an
exercise.

4.2.10 Theorem. Let n € N, Q@ € R" open with C’m+2-boundary, f €
Wm2(Q) and ¢ € WmH22(Q). Let a¥,a’ € C™T(Q), b',d € C™(Q) and,
for some A >0 N
V(fz) cR": a”{,{j > )\|§|2
Let u € WH2(Q) be a weak solution of the equation
au_; + a'u) ; + b ; + du =

(a%u; ) ' ! . Lo (4.10)
U =% m W7

Then
u € Wm+2’2(Q)

and there holds
[ullmt2,2,0 < clull2.0 + (| fllm2.0 + [¥]ni22.0),
where ¢ only depends on the data of the problem.® If in addition there holds
d+ad’; <0,
then (4.10) admits a unique solution in W™T22((Q).

This theorem, together with Corollary 3.5.4, implies that if all data are
smooth, the solution is of class C*°(£2). The only piece that is missing for the
classical Dirichlet problem to be solved, is that we have to show that

veECT)NW(Q) = vjan = 0.

8and not on w.
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4.2.11 Lemma. Letn €N, Q @ R" open with C'-boundary. Let v € C1((Q).
Then
RS WOL2(Q) = Vg = 0.

Proof. We prove that the restriction operator

R: (CHQ), - l2.0) = L (09)
U = Ujp

is continuous. There suppose first, that supp(u) C U, where U is the domain of
a straightening function . Then

/ |ul :/ |uo ™1 (&,0)|\/det goq(2) di
0 $(8QNU)

(oo}
< c/ / |Du(yp= (2, 2™))| didz™
»(OQNU) J0

< c/ | Dul.
Q

A partition of unity gives the continuity of R. Hence there is a unique extension
of R to W'2(Q). If v € Wy (), then a sequence (¢))ren of functions in
C2°(£2) converges to v in the W12-norm and hence

0= R(¢r) = R(v) = vjpq.
O

We obtain existence and regularity of solutions to the classical Dirichlet
problem.

4.2.12 Theorem. Letn € N and Q € R™ open with smooth boundary. Let
u € WH2(Q) be a distributional solution to the linear Dirichlet problem

(auj +a'u) ; +bu; +du=f
oo =v¢ in WhH?,

where (a') is strictly positive definite and f, ¢ as well as all coefficients are
smooth up to the boundary. Then u € C*(Q) and

g = Yjoq-

If in addition there holds _
d+a'; <0,

then the classical Dirichlet problem

(auj+a'u); +bu; +du=f inQ
ujpq =1 on 99

is uniquely solvable in C*°(Q).
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4.3 Dirichlet spectrum of the Laplace operator

From Theorem 3.1.21 we obtain the following spectral theorem for the Laplace
operator.

4.3.1 Theorem. Letn €N and Q2 € R™ with smooth boundary. Then
—A: Wy = D(Q)

has countably many eigenvalues A, i.e. exists u # 0 such that

/Q<Du,D<p>:)\/ngp Y € C(Q).

If we order the eigenvalues
ML,
then
71— 00
The normalised eigenfunctions u; are of the class C*°(Q) and form an L?-
orthonormal basis of L*(§)). Furthermore there holds

/ (Dui,Du]) = /\i(sij V1l < 1,J < 00.
Q
Proof. We justify the applicability of Theorem 3.1.21. Set H = Wol’2 (Q),

K(u,v):/ﬂuv, B(u,v)z/g(Du,Dw.

Then both K and B are symmetric and continuous due to Hélder’s inequality.
Furthermore K is compact, since for a bounded sequence (ug)ren in Wy>(€2),
Rellich’s theorem implies the existence of a convergent subsequence

Uk — U

in L?(Q). B is coercive relative K, since

B(u,u) = /Q |Duf? = |[ullf 2.0 = lull3 o = llull2.0 — K (u,u).

Thus from Theorem 3.1.21 we obtain a countable family of eigenvalues \;
and eigenfunctions w;, which are smooth due to the regularity theorem The-
orem 4.2.12. They are complete in W, %, but since the L?-closure of W, *(Q)
equals L2(£2), they also form a basis of L?(£2). The orthogonality relations follow
as well. O
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CHAPTER 5

THE MODEL EQUATIONS

In this chapter we collect some classical results for the model equations, namely
for the Laplace- and Poisson equation, the heat equation and the wave equation.
We will discuss fundamental solutions and give some existence result for the heat
equation using Laplace eigenfunctions.

5.1 Laplace equation

Mean value property and its consequences

The following theorem is the well known mean value property for harmonic
functions, which was first proved by Riemann in the case n = 2 for harmonic
functions, [15]. The presentation of most of the results in this section is taken
from [5].

5.1.1 Theorem. Let2 <n € N and C R" open. For a functionu € L] ()
the following statemants are equivalent.

(i) uwe C*®(Q) and Au = 0.
(i) w satisfies the mean value property, i.e. for almost every x € Q) there holds

1
u(z) = / u VBy(z) € Q,
Br(x)

W™
where w, is the measure of the n-dimensional unit ball.
Proof. (i) = (ii): Define

1 1
f(r) /Br(x) u u(z +rz) dz

wpr™ Wn J B, (0)

1 1
= —/ / u(z + rs€)s" " tdéds.
OJn 0 Sn—1

Differentiation gives

1
f(r)= —/0 /an s (Vu(z 4 rs€), s€) déds.

Wn
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Then, letting v(z) = u(x + rsz), we obtain

r

1 1 n—-1

= —/ 5 / Av ds
WnJo T B1(0)
0.

1 Snfl
)= [ [ w0 deas

Thus, f is constant and

1
lf —u(z)| < / |lu —u(z)] < sup |Ju—u(z)] =0, r—0,
WnT™ J B, (z) oz

due to continuity.
(i) = (i): First we note that a function u € L{ () satisfying the mean

loc
value property is continuous in €2, since for z,y € {2 and small € > 0 we have

S o

Be(z) Be(y)
1

< (/ ul+ [ |u|>
Wne Be(x)\Be(y) Be(y)\Be(z)

-0, ify—ax

1

Wp "

() —u(y)] <

Thus the mean value property is actually satisfied everywhere. Now we calculate
the convolution with a radially symmetric mollifier:

= — — ‘ n—1
uelz) = /B L uny =) dy / /a o WO s

_ ‘ n—1

,/0 ne(r)r /631(30) u(rg) dédr

€ _ _ d /
n—1 1—-n
= [ n(r)r Tt — u | dr
/0 (r) < dr |, (z) )

€ d n
- / 1e(r) - (" u()dr

u(x) /06 W™ e (r)dr = u(z).

Thus u coincides with its convolution and is consequently smooth. Suppose at
some z € Q we had Au(x) > 0. Then the function f from the first part of the
proof would be strictly increasing, in contradiction to the mean value property.
Similarly Au(z) < 0 leads to a contradiction. O

For harmonic functions we obtain nice derivative estimates. For an explicit
value of the constant involved see [5, Thm. 2.10].

5.1.2 Proposition. Let 2 <n €N, Q CR" open and u € C*°(Q) harmonic.
Then for B, = B,.(z) C Q there holds

patol] < o) (1) sup

r(m)
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Proof. By induction on the order of the multiindex.
|l = 1: The function w ; is harmonic in 2 and satisfies

AL 2™
uq(x) = / u; = / u(v,e;).
’ Wat™ g, T wWaT" Jop,
2

r
2

Thus
2n
|ui(x)] < — sup[u].
T Br
2
Let the claim hold for || = k, then
2n 2n
|u,i1~~~ik+1 (.’L‘)| < 7 SB}lP |u,i1mik| < WC(WL k) sup |u|

r

The following Liouville theorem is a direct consequence.

5.1.3 Theorem. FEvery bounded and harmonic function on R™, n > 1, is
constant.

Proof. For n = 1 every harmonic function is linear, so in this case the result
holds. For n > 2, in Proposition 5.1.2 let r — oo. O

There is another corollary, the proof of which is an exercise:

5.1.4 Exercise. Let n > 1. Then every bounded sequence of harmonic func-
tions on a domain 2 C R™ contains a subsequence, which converges locally
uniformly to a harmonic function on (.

From the mean value property we obtain the following famous inequality.

5.1.5 Theorem (Harnack). Let2 <mn € N and u be a non-negative harmonic
function on an open set @ C R™. Then for any connected Q' € Q) there exists a
constant ¢ = ¢(n, ', Q), such that

supu < cinf u.
Q/ Q/

Proof. Let y € Q and Byg(y) C Q. Then for x1, 29 € Br(y) there holds

u(zy) ! / u < L / u
1) = = ’
wn R J B (a1) W ) By (v)

@)= s [ uZ g |
u(xryg) = ——— U> — U
wn3”R” BSR(CU2) wn?)an BzR(y)

u(zy) < 3"u(xs)

and hence

and thus

sup u < 3" inf wu.

Br(y) Br(y)
Let C be a closed path between two points x and z and cover C' by finitely many
balls of radius R, such that 4R < dist(C,9%2). Apply the previous estimate to
each ball. O
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Fundamental solution

We want to find a nontrivial radially symmetric solution I' of the Laplace equa-
tion in R™. Therefore we calculate AT, where

D(z) = ~y(r) =~([z]).
There holds

1 Ti _nTiZy 1 0ij 1 TiTj

i=71 L= YT :
B |z|? || |3

Thus 1
n—
AT — ’7// + T’yl'

Hence if we put

(r) logr, n=2
)=
7 7"2*", n>3

for 7 > 0, we may make the following definition.

5.1.6 Definition (Fundamental solution of Laplace’s equation). Let 2 <n €
N. The function

r:R"\{0} = R
L1 =92
F(.T) — 21 ?g(|x‘)7 . n
=, T 23

is called the fundamental solution of the Laplace equation.

Thus for every y € R™, the function I'(- — y) is harmonic in R™\{y}. But we
can say even more.

5.1.7 Proposition. Let2<n &€ Nandy € R" then'(-—y) € VVI})C1 (R™) and

AD(-—y) = d,.'

Proof. To show that I'(- — y) € W,2! (R") we note that there holds

loc

L ozi—yi
0,il(x —y) = — 2121
i L(@ =) o [ =y
and hence we obtain the following estimate:

1 -n
1D, D@ —y)| < — |z —y|' ™"
nw

n

IThis is the reason for the choice of the constants in the definition of the fundamental
solution.
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Hence the weak derivative, if it exists, will be integrable, as well as the function
itself. Thus it remains to check that I'(- — y) is weakly differentiable. Let
© € C(R™). Then for € > 0 there holds

Be(y)

[rewecde= [ te-pei@ bt [Ty de
—— [ Tie-yele) de

R\ B (y)

+ /aBE(y) Iz - y)p(x) < é — i‘ ; 6i> dx
+ / Iz —y)p.i(x) doe

Be(y)

- — Li(z—y)p(x) de
Rn

as € — 0, since all functions are integrable. The weak differentiability follows.
To prove the second claim we show

/n L(z —y)Ap(z) dz = o(y) Vo e CZ(R").

Since I'(- — y) has a singularity at y, we can not just apply partial integration.
First we must cut out the singularity and then perform a detailed analysis at
the point y. With the help of the second Green’s formula, Exercise 1.4.6, we
deduce

/n D(z — y)Ap(x) dz

= / Iz — y)Ap(z) dz + / Iz —y)Ap(z) dx
R™\ Be(y) Be(y)

(5.1)
_— /  (V.T(e - y), V() do + / I~ y) (Vo)
R™\ Be(y) 0B (y)

+ /B‘(y)lj(x —y)Ap(x) du.

The second and third term on the right hand side will vanish in the limit as
€ — 0. Hence we only have to investigate the first term:

-/ gy (T = - / o 6 <vxr<x o= > da

1 1
T nw, 8B.(y) o ly — x|t
= ¢(y)-

Letting ¢ — 0 in (5.1) gives the result. O

5.1.8 Corollary (Representation formula for A). Let 2 < n € N and f €
C?(R™). Then

u(w) = [ T )f) dy
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defines a C?(R™)-function and solves
Au=f.

Moreover, if n > 3, every bounded solution u € C*(R™) of Au = f has this form
up to a constant.

Proof.
u(x) = /n L(2)f(z — 2) d=.

Hence u € C?(R") and the result follows from Proposition 5.1.7. The uniqueness
follows from the Liouville theorem. Note that in case n = 2, u does not need to
be bounded. O

Green’s function

Corollary 5.1.8 provides a way to explicitly write down a solution to
Au=f,

on the whole R", once the function f € C2(R") is known. But what about
the Dirichlet problem in domains €2 with given boundary values? We want to
construct a similar integration kernel as I', such that we get a representation
formula for solutions of the Dirichlet problem on a domain, i.e. we want to give
a formula for the solution to
Au=f
Upa = 9,

where 9Q € C® and g € (). The obvious strategy is to use I' to get
a solution to Au = f and then use a correction term to adjust the boundary
values. This correction term shall not destroy Au = f again, so we want to
make it harmonic.

(5.2)

5.1.9 Definition (Green’s function for a domain). Let2 <n € Nand Q@ € R"
with smooth boundary. The Green’s function for  is defined by

Glz,y) =T(x —y) —¢"(y), zycQz#y,
where ¢* is the unique solution of
A¢® =0 in Q
¢ =T(-—2x) on .

We obtain
5.1.10 Proposition. Let 2 <n € N and Q € R™ with smooth boundary. Let

fig € C=(Q). Then the function

oG
—(x,y) d
Qg(y)ayy( y) dy

o) = [ Glansw) v+ [

solves eq. (5.2).
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Proof. We already know a solution to exist, so call it u. Let € 2. From the
second Green’s identity applied to the domain Q\B.(x) we obtain

oG oG
L owg = [ @uSeE) - [ g

ou
= —/Q\Be(x)f(y)G(%y) dy+/dB . auG( )
L g ) dy

Lo /f (@) dy +u(x)

as € = 0. Hence u is given by the desired formula. O

5.1.11 Remark. (i) Of course this representation formula is not very explicit,
since it involves the construction of a harmonic function with given bound-
ary values. However, it is completely determined by the fundamental so-
lution. For special domains such as a half space and balls one can write
down the G explicitly.

(ii) The regularity assumptions of the data can usually be weakened. However,
since we apply the regularity and existence theory in order to get existence
of a Green’s function, we stick to the smooth case in the above definitions.

5.1.12 Exercise (Green’s function for a ball). Let 2 <n € N, 0 # x € R”
and denote by

the inversion at dBR(0).
(i) Prove that
D(lz—y)) — T (Yz—g]), 0
Glory) = { (e —y) -1 (Hl—3l). v#
D(lz[) = T(R), y=0
is the Green’s function for Bg(0).

(ii) Let g € CY(0R). Prove that

R%—|z|?
u(z) = nwnx JoBr) sl yI" dy, = € Br(0)
g9(z), z € OBR(0)

defines a harmonic function with boundary values g.

Remark: Note that by putting x = 0 we recover the mean value property
of harmonic functions.
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Perron’s method

Perron’s method [13] provides a very elegant and powerful way to construct
harmonic functions on a domain with given continuous boundary values. It
does not rely on any previous results except the maximum principle for harmonic
functions and the solvability of the Dirichlet problem in balls. The presentation
follows [5]. We need several preliminary definitions and results.

5.1.13 Definition (Sub- and Superharmonic functions). Let 2 < n € N and
Q C R™ open. A function u € C°(Q) is called subharmonic, if for every ball
B C Q and every harmonic function h € C*°(B) there holds

U|pB §h|aB = u<h.

u is called superharmonic, if —u is subharmonic.

5.1.14 Exercise (Classical subharmonic functions). Let 2 <n € N and Q C
R™ open. Suppose u € C?(Q) is subharmonic. Prove that

Au > 0.

5.1.15 Proposition. Let2 <n €N and Q C R" be a domain. Let v e C°(Q)
superharmonic and u € C°(Q) subharmonic. Then there hold

(i) w satisfies the strong mazimum principle in Q.

(ii)

Vg = Upn = (U|Q >u or v= u)
Proof. 1t is enough to prove (ii). The set

A={z e Q:u(z) —v(zx) = Sl(llp(u —v)}.

is closed in Q. If it was not open, then there existed z € A and a ball B C Q)
around x with

(u—v)jop # M.

Denote by 7 and © the harmonic extension of v and v in B. Then

M > Hé%x(a —0) > u(x) —v(x) > u(z) —v(z) = M.

Hence u—v = M, a contradiction. Hence, if the function u—v attains an interior
maximum, it must be constant. In this case the constant must be negative or
zero due to the boundary condition. In the other case we must have v > u. [

5.1.16 Definition (Harmonic lifting). Let 2 < n € N, Q C R™ open, u €
C°(2) subharmonic and B € © a ball. Define the harmonic lifting of u in B by

_Ju(r), z€B
U(x)_{u(gc), x € Q\B,

where « is the harmonic extension of ujsp.

5.1.17 Proposition. Let 2 < n € N, Q C R" open, uy,...,uy € C°(Q)
subharmonic and B € Q a ball. Then there hold:
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(i) The function v = max(uq,...,uy) € C°() is subharmonic.
(i) The harmonic lifting U of u in B is subharmonic.
Proof. (i): Let B’ €  a ball and a harmonic function h with
viap < hjapr-
Then this carries over to the u; and hence
v < h.

(ii): Let B’ €  a ball and a harmonic function h with

UlaB/ § h‘aB/.
Since u < U, we obtain
’LLlB/ S h.
There hold ~ B
d(BNB')=(0BNB')uU(0B' N B)
and

Wopng < h, Uspnp = wapns < h
The maximum principle implies
ﬂlB/ S h
Hence U < h. O

5.1.18 Definition (Subfunctions). Let 2 <n € N, Q € R" open and ¢ € R
bounded.

(i) A subharmonic function u € C°(Q) is called subfunction rel ¢, if ujgo < .
Denote by S, the set of all subfunctions rel ¢.

(ii) A superharmonic function u € C°(Q) is called superfunction rel ¢, if
U)o = P-

The following theorem constructs a harmonic function on €.

5.1.19 Theorem (Perron). Let 2 < n € N, Q € R" open and ¢ € R
bounded. Then the function

u(z) = sup v(z)
vES,

is harmonic.
Proof. All v € S, are bounded, because

Vjgn < sup ¢
o0

and the latter function is harmonic. Hence u is real-valued function. Let x € €,
then there exists a sequence of subharmonic functions (0, )nen in S, with

() = u(x).
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Set
Uy, = max(y, inf ¢).

Then also vy, (z) = u(z). Fixaball z € B € Q and let V;, € S, be the harmonic
lifting of v, in B. Then
Va(z) = u(z)

and V,, is uniformly bounded. Due to Exercise 5.1.4 there exists a subsequence
(Vi)nen such that for all B’ € B

|Vn - U|0,B/ — 07
where v is harmonic in B. There hold
v<u, wv(x)=u(x).

Claim: v = u in B. Otherwise there existed a point y € B with v(y) < u(y)
and a function 4 € S, with

v(y) < a(y) < u(y)- (5.3)

Let w,, = max(a,V,,) and W,, the corresponding harmonic liftings in B. Again,
a subsequence (W, )nen converges uniformly in any B’ € B to a harmonic
function w with

v<w<u, v(r)=w()=uz).
The maximum principle implies v = w in B, in contradiction to (5.3). Hence u

is harmonic. ]

To investigate, under which assumptions on the boundary 02 the function
 is attained continuously by the harmonic function u, we make the following
definition.

5.1.20 Definition (Barriers). Let2 <n €N, Q2 € R" and { € 0. A function
w € C°(Q) is called a barrier at & relative to Q, if

(i) w is superharmonic
(i) w(¢) =0 and w > 0 on Q\{¢}.
& is called regular, if there exists a barrier at £ relative to €.

5.1.21 Lemma. Let2 < n € N, Q € R?, £ € 9Q regular and ¢ € R
bounded, such that ¢ is continuous at &. Let u be the function defined in Theo-
rem 5.1.19. Then

lim u(z) = p(E).

r—E€

Proof. Let € > 0. Then there exists a constant k > 0, such that ¢(£) + e+ kw is
a superfunction rel ¢ and such that ¢(§) — e — kw is a subfunction rel ¢. Since
u is harmonic, we deduce

w€) —e—kw <u <) +e+kw

and hence
(@) = ¢(&)] < € + kuw(@).
The result follows, since w(z) — 0 as z — &. O
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The following theorem is the main conclusion of Perron’s method.

5.1.22 Theorem. Let2 < n € N, Q € R™. Then the classical Dirichlet
problem
Au=0 1inQ
u=¢ on 0f)
is solvable in C>(2) N CO(Q) for arbitrary p € C°(0N) if and only if every
boundary point of OS2 is regular.

Proof. Given that every boundary point is regular, the solvability follows from
Lemma 5.1.21. Conversely, suppose that the problem is solvable for any given
. Let & € 092 and put

p(r) = |z — £

The solution corresponding to these boundary values is a barrier at &. O

Theoretically this is a nice result, but in practice it will only be useful if we
have a simple criterion, when a boundary point is regular. Otherwise we will
not be able to decide when the Dirichlet problem is solvable. Fortunately there
is such a criterion:

5.1.23 Proposition. Let 2 < n € N and Q € R"™ satisfy an exterior ball
condition at every & € 0.2 Then every boundary point is reqular.

R2—n _ ‘.’17 _ y|2—n, n > 3,

Proof. Set

where Br(y) is an exterior ball at {. Then w(§) = 0 and w(z) > 0 for all
x € Q\{¢}. Furthermore w is harmonic, so that w is a barrier. O

5.2 Heat equation
In this section we will obtain first classical existence results for the heat equation
Agu—1u=0. (5.4)

This is the prototype of a linear parabolic PDE. Due to the maximum principle
for parabolic equations, Theorem 2.2.2; it seems natural to consider (5.4) on
a domain Q C R"*! with prescribed parabolic boundary values, namely we
consider the so-called Cauchy-Dirichlet problem

Ayu—1=0 in Q@
u =@ on JdpQ,
where @ = (0,7) x Q is a cylinder with open Q@ C R™. We shall first consider
Q =RV = {(t,z) € Rx R": ¢t > 0}. In this special case we can define a

fundamental solution, similarly to the Laplace equation. The major source for
the first part of this section is [1].

2This means that R™\Q satisfies an interior ball condition, compare Definition 2.2.13.
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The fundamental solution

5.2.1 Definition. Let n € N. The function
I': (0,00) x R" - R

ro) = g e (-5

is called the fundamental solution of the heat equation or also the heat kernel.

The following observation justifies the terminology.

5.2.2 Theorem. Letn € N. The heat kernel I' satisfies
/ Tt,z)de =1 Vt>0

and _
AT —-T=0.

Proof. There holds, using the transformation of variables y = 2%/{,

1 1 * "
/ I(t,z) de = — eIl dy = — </ e dm) =1.
n T2 JRn T2 — 00

Moreover,
2
L S N
2t 4¢2
O
Now we are able to solve the Cauchy problem for the half space.
5.2.3 Theorem. Let p € CO(R™) N L>(R"). Then a solution to
Ayu—u=0 inR}H!
u=¢ on{0} xR"
in C®(RTH) N CORYT) is given by
utea) = [Tt - (e) de (55)

Proof. Since the integral converges locally in Rﬁ“ uniformly and IT" is smooth,
differentiation under the integral is justified. Thus w is a solution of the heat
equation. We have to check the continuity at ¢ = 0. We calculate for every
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t>0,6>0and |z — x| < 3:

uet) ~ @) < [ Tt = ©lpl) - (oo dg
[ Tt olele) - elao dg
Bs(zo)

+ / T(t,z — &)|p(€) — ol0)| de
R”\Bs(zo)

1 |&—=q|?
< 050 () + 2oz | o T g
(o) R™\Bs(z0) (47Tt) 2
o0 2
< OSCB,s(:r:o)(QO) + cnlplo,rn /5 e dr <,
av
whenever § = d(e) and t = () are small. O

Note that the solution (5.5) is positive everywhere instantly, if the initial
datum is positive somewhere. This phenomenon is known as infinite speed of
propagation.

Now we want to solve the inhomogeneous problem, i.e.

. . 1
Ayu—1=f mRT'

u=0 on {0} xR". (5.6)

Motivated by Theorem 5.2.3 and the fundamental theorem of calculus, we expect
the following proposition to hold.

5.2.4 Proposition (Duhamel’s principle). Letn € N and f € CL2([0,00) x
R™). Then the function u defined by

ta) = - [ t [ r= s -9 dsie

solves (5.6) and there holds u € C*((0,00) x R™) N CO(RT™), with u(0,z) = 0
for all x € R™.

Proof. A change of variables gives

t
uttia) == [ [ T s ra =) dray
Thus

Ayu—u

- /0 / D)@ = Aa) f(t =72 —y) drdy + / L(t,y)f(0,x —y) dy

n

* /0 / (7, 9)(0 — M) f(t — 7, — y) drdy + / Lt 9) /(0,2 —y) dy

n

< / T(e,9)f(t — 6,z — y) dy + C

— f(t,x)
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for € — 0, as in the proof of Theorem 5.2.3. O

Combining these results gives:

5.2.5 Theorem. Letn € N, f € C12([0,00)xR"™) and ¢ € CO°(R™)NL>(R").
Then the function u defined by

uta)= [ Ttwr—ep(@) de— [ [ T—so -5 dude

belongs to u € C*((0,00) x R") N CORH) and solves

Ayju—u=f inR}H
u=1¢ on {0} xR"™

The Cauchy-Dirichlet problem in domains

The following method to construct solutions to the heat equation in arbitrary
domains only relies on the elliptic L2-theory and hence is quite elegant. As
a motivation note the following fact. If 2 € R™ has a smooth boundary and
v e C®(Q) N W, ?(Q) is one of the Laplace eigenfunctions,

—Av = Ao,

then the function
u(t, ) = e Mo(z)

is a solution to the heat equation in (0,7") x £ with zero Dirichlet boundary
conditions. Hence, since any L?(f2) function 1y can be expanded as a Fourier

series,
o0

ug = (g, us)y g Ui,

i=1

where (u;);en is the countable family of normalized Laplace-eigenfunctions cor-
responding to the eigenvalues );, we can expect using formal® differentiation,

that
Z e " {ug, u;) 9.0 Ui

will solve the Cauchy-Dirichlet problem

A, —4=0 in (0,00) x Q
u(t,) =0 ondQ Vi>0
u(0, +) = wo.
Note that from these equations we would then obtain

™m

dtm

Alu(t,x) = u(t,z) =0 VYo e dQVt>0Vm>0.

3yet unjustified
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Hence, to even have a chance to make the solution u belong to the class
C>([0,T) x ), we have to impose the compatibility condition

Amu0|ag =0 VYm>0.

In this section we make this plausible argument rigorous. We start with weak
initial values.

5.2.6 Theorem. Letn € N, Q € R™ with smooth boundary and ug € L?(€2).
Let u; be an L*(Q)-orthonormal basis in Wol’Q(Q) of Laplace eigenfunctions with
eigenvalues \;. Then the function

u: (0,00) x @ = R

u(t, x) Ze (ug, u; QQul(x)

i=1
is a smooth solution to the heat equation. Furthermore there holds

llu(t,-) — uoll2,o = 0, t—0

and if in addition A™ lug € W2(Q) N WOLQ(Q) for m > 1, then there also
holds
llu(t, ) — uoll2m,2,0 =0, t—0.

Proof. Recall that u; € C*°(Q). Since the satisfy
—Au; = \jug,
the L?-regularity theory, in particular Theorem 4.2.10, gives
[willmtz,2.0 < clludlzo + Aillullm,2.0)
for all large m and an induction and the Sobolev embedding theorems give
wilko < clluillmrz2.0 < e(1+ A7,

We prove that the partial sums

N

UN = Zei)wt <’U,0,’U,i>279 U;

i=1

form a Cauchy sequence in C*(Q2) for any k£ > 1 and give ¢t > 0. Therefore pick
m = m(k) large enough to ensure

wWm™2(Q) — C*(Q).
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There holds

M 2
-\t
S M g, w0
=N m,2,Q
M

<UOaui>27Q \2||UiH72n,2,Q

+ Z e_(/\i+)\j)t‘ <u07ui>2,§z || <u07uj>27Q | <ui7uj>m72,Q
N<z‘,j<M

< ZP N (uo, i)y g I

%O,

as N, M — oo. Here p is a polynomial. The convergence is uniform on each
[€,00) C (0,00).* Hence

U—Ze uo,uZQQuZECOO( ),

the differentiation under the summation sign is justified and the first claim of
the proposition follows. For the second claim we estimate

N
u(t, -) = wollz,o < ||D (1 =€) (uo, us)y o ui
=1 2,Q
o)
DD (=) ugy i)y g ui
1=N+1 2.0

First pick N large enough to ensure that the second term is less than a given
€ > 0. Then let t — 0.

Now let A" lug € W22(Q) N Wy () for all m > 1. First note that the
L2-estimates imply that for all functions v € W™+22(Q) N W, *(R2) there holds

[vllmt2.2.0 < clvll2.0 + [Av]Im2.0)-

Thus for ¢t > 0,

lu(t, ) —uollzm,2,0 < c(|lu(t, ) (u(t,) —uo)ll2m-2,2.2)

4We have used Parseval’s inequality for orthonormal basis of Hilbert spaces, i.e. if

o]

T = Z (Izui>uiv

i=1

then

o]

Z | (z,u;)|? < co.

=1
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and hence by induction

lu(t, ) = uollzmza < €Y |AF(u(t, ) — uo)

k=0

We estimate each term on the right hand side:

—At

AR (u(t, ) — ug) |20 = ) (uo, wi)y o Ui

2,0

Z)\k e ) (uo, u)y g i

2,0
(o]

Do M= M) (o ui)yquif

i=N+1 2.0

which, by the same reasoning as above, converges to zero as t — 0. That the
latter term becomes small, when N approaches infinity, is due to the fact that
the Fourier series of —A¥u is given by

o0 o0
—Akuo = Z <—Aku0, ui>27Q U; = Z)\f <UQ,U1’> Ug ,
i=1 i=1

which shows that the latter series converges in L?(£2). The proof is complete.
O

5.2.7 Corollary. Letn € N, Q € R™ with smooth boundary, ug € C*(),
such that A™ug € Wy2(Q) for allm € N. Let u; be an L2()-orthonormal basis
in W01’2(Q) of Laplace eigenfunctions with eigenvalues \;. Then the function

u: Q =(0,00) x @ =R

Ze i uo,ulQQul(x)

is the unique C>(Q)-solution to the Cauchy-Dirichlet problem

Ayju—u=0 1inQ
u(t,)=0 ondQd Vt>0
u(0, +) = uo.

Proof. Due to the uniform convergence of the integral in {t > €} there holds
u € C*((0,00) x Q). From the Sobolev embedding and Theorem 5.2.6 we obtain

|u(t, ) — U0|k7Q -0, t—=0.

Hence all spatial derivatives of u(t,-) can be continuously extended to Q. We
have to prove the same for the time derivative. There holds for all £ > 0

dlc
P u(t,z) = Afu(t,z) = APug(z), t—0

and hence u € C*®(Q). O
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Harnack inequality

The Harnack inequality for the heat equation is a little bit different that for
harmonic functions. As expected, a heat distribution will need a little bit of
time to level out along space. Hence in order to estimate the maximal heat by
the minimal heat, we have to wait for a little while. Thus all we should expect
is an estimate of the rough form

supu < ¢(t1,ta) inf u,
My, M,

where M;, are some compact subsets of {2 at times ¢; < t5. For the heat equation
such an estimate was first proven independently by Hadamard and Pini, [6, 14].
We present an elegant proof due to Li and Yau, [10], which is applicable to
many other parabolic operators, even nonlinear ones.

5.2.8 Theorem (Harnack inequality for the heat equation). Letn €N, Q €
R™ open, T > 0 and u € C*((0,T) x ) a positive solution of the heat equation.
Then for every ball B.(xzo) € Q and times 0 < t1 < to < T there exists a
constant ¢, such that

max u(ty, ) <c¢ min u(ts,-).
Br(z0) By (zo0)

Proof. We will prove that the function
v =logu

satisfies the inequality
v > a|Vo]? - B (5.7)

in [t;,t2] x B,(x0) with suitable constant a and 8. From this we will conclude
the Harnack inequality as follows.

1
d
v(ta, x9) —v(ty, 1) = / %U(Stg + (1 —s)ty, 822+ (1 — s)x1) ds
0
1
:/ (8(t — t1) + (Vo, 25 — 21)) ds
0

1
Z/ Oé|vv‘2(t27t1)7B(t27t1)+<vv,$27$1> ds
0
Z —C,
where ¢ only depends on r, t; — t1, a and 5. Hence

u(ta, x2) > e ‘u(ty, z1).

Taking the maximum over x; and the minimum over x5 gives the Harnack
inequality.
Hence we have to prove (5.7). v satisfies

Agv — 0 = — |Vl
For k > 0 to be determined later we obtain an equation for

q= A0+ /1|Vv|2,
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namely

Arq— G = Ap(A0) + 25 (V(AL0), Vo) + 26| V0|2 — A0 — 2k (VD, Vo)
=2(k — 1) ({V(A,), Vo) + 2(k — 1)|V?0|* — 2k (V(ALv), V)
-2k (V|V0|*, Vv)
= —2(Vq,Vv) + 2(k — 1)|V?v|2.

Now let ¢ be a smooth cut-off function with

Co,@ =0, Coryxa >0, iy ta]x By (z0) = L
Set, for pu > 0,
z=Cq+

and suppose z attains a negative minimum at some interior point, at which we
firstly conclude

1
Vo2 < =|Au0] < |V
K K

and thus ¢
‘q| S 7|V2’U|7
K
secondly
Vz
0:?=4VCQ+CVQ

and thirdly, putting k = %7

0<Az—2
=43, Cq + 12 V¢ Pg + CHALg + 4¢3 (V¢ V) — ¢Hg—4¢3Cq —p
< e(®*|VP0| — 2¢* (Vg, Vo) — CHV0]* + 4¢3 (V(, V) —
< eC®|V20| +8¢3q (V¢, V) — (V] + P V20| V(] —
2
< eIVl + eCtq||Vl® + CTMIVC\Q — V20 + V||V — i
<0

for large p, which is a contradiction. Hence z remains non-negative and thus

1 1
0 — §|Vv|2 =Azv+ 5\V1}|2 =q(t,x) > —put V(t,z) € [t1,t2] X Br(xo)-
Hence (5.7) is established and the proof complete. O

Energy methods

The uniqueness question has already been settled for the Cauchy-Dirichlet prob-
lem. Now we want to provide another proof using energy methods, which is in-
teresting by itself. Furthermore it will enable to prove a result about backwards
UNLGUENESS.
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5.2.9 Proposition (Uniqueness revisited). Let n € N, Q € R™ with smooth

boundary, Q@ = (0,00) X Q and u € C*°(Q) solve

Ayu—u=0 Q@
u=0 on J,Q.

Then v = 0.

Proof. Along the heat flow there is a monotone quantity’, namely

e(t):/ﬂu(t,a:)Q da.

We have
é(t) = 2/ u(t, x)u(t, x) dx
Q
= 2/ u(t,x)Azu(t,z) de
Q
= —2/ |Vu(t,z)|* dx
Q
<0.
Hence
e(t) <e(0)=0
and u = 0. O

The backwards uniqueness is more subtle.

5.2.10 Proposition (Backward uniqueness). Letn € N, Q € R™ with smooth

boundary, T >0 Q = (0,T) x Q and u € C*(Q) solve

Ayu—u=0 1inQ
u(t,) =0 ondd Vt>0
u(T,-) =0.

Then u = 0.

Proof. In addition to Proposition 5.2.9 we calculate
é(t) = —4/ (Vu(t,z), Vu(t,z)) dz
Q
= 4/ Ayu(t,z)u(t, z) de
Q

—4 /Q (Ayult, z))? da.

5Especially in more complicated problems, such as in fully nonlinear equations, the exis-
tence of a monotone quantity often opens the gates to existence and convergence results.
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Hence

é(t)? = 4 (/Q IVt z)2 dx>2
_y4 (/ﬂu(t,x)Aw(t,x) dx>2

< Aflult, )3 ol Asu(t, )30
= e(t)é(t).

Let
T=inf{t > 0: u(s,") Z0 YO<s<t}<T

and suppose 7 > 0. This implies e(0) > 0 and é(0) < 0. Thus f(¢) = loge(t)

satisfies
5(t
(*) >0 YO<t<rT

)2~

[\v]

~
o]

for =5

~—
Q

and is hence convex. Thus
f(A=98)7) <sf(0)+(1—s)f(r) VO<s<1

and
e((1—8)7) < e(0)’e(r) "5 =0,

where we used u(7,-) = 0. This is a contradiction to the definition of 7. O

5.3 Wave equation

In this final section we collect the most basic properties related to the wave
equation and its solutions. In order to do so, we first have a look at a first order
PDE, the transport equation. We follow Evans’ book [1] closely.

Transport equation
5.3.1 Definition. Let n € N and b € R"™. The PDE
w4 (b,Vu) =0 (5.8)

in (0,00) x R™ is called the transport equation.

5.8.2 Remark. Having a sharp look at (5.8), one can see that a certain direc-
tional derivative of u vanishes, namely the one in direction (¢, b):

%u(t+s,x+sb) =a+ (Vu,b) =0.
Hence the value of v is constant along the line
v(s) = (t+ s,z + sb)
and if we know the C! initial function

g: R" = R,
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we conclude by inserting s = 0 and s = —t that
u(t,z) = u(0,z — tb) = g(x — tb).

If we want to solve the inhomogeneous problem

w+ (b, Vu) = f,

we can proceed similarly and integrate to obtain
0d
u(t,x) — gz — tb) = / d—u(t + 5,2+ sb) ds
_¢ as
0
:/ f(t+ s,z + sb) ds
—t

:/ Flrya+ (1 — 1)) dr.
0

We have proved:

5.3.3 Proposition. Letn € N, g € CY(R") and f € C((0,00) x R™). Then
the unique C1((0,00) x R™)-solution to the inhomogeneous transport equation
with initial values g,

u+ (b,Vu) = f in (0,00) x R"
u=g on{0}xR"
is given by

u(t,z) = g(x — tb) —l—/o f(r,x + (1 —t)b) dr.

The one-dimensional wave equation

We want to solve the one-dimensional wave equation on the real line, i.e.
U —Uge =0 1in (0,00) xR
u=g,s=h on{t=0} xR.

Note that we have to give two initial conditions, similar to second order
ordinary differential equations. We will heuristically derive a solution. Therefore
let

V=U— Ug.

Then
V+V=U+ Uty — Uzt — Ugzy = 0.

Hence v solves a transport equation and we get
v(t,z) = alx —t),
where a(z) = v(0, ). This implies

U—ug, =alr—1),
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which is an inhomogeneous transport equation. Putting b(z) = u(0,x) we get

u(t,x):b(:v+t)+/0 a(z+ (t—s)—s) ds

Now we insert the initial conditions:

a(z) =v(0,2) = ut(0,2) — u,(0,z) = h(z) — ¢'(x).

Inserting gives

x+t
uta) =gla+0)+5 [ (hy) =g ) dy

T+t
= %(g(x—i—t) +g(x—t)) + %/x h(y) dy.

We obtain
5.3.4 Theorem (D’Alembert formula). Let g € C*(R), h € C*(R). Then

x4+t
uta) = 3lota+0) +olo— 1)+ [ h) dy

s a solution to the wave equation and

lim  wu(t,z) = g(xg), lim  a(t,z) = h(xg).
(t,z)—(0,z0) ( ) g( O) (t,z)—(0,z0) ( ) ( 0)
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