## MAXIMUM PRINCIPLES

## 1. EXERCISES

Throughout, we will assume that

- $\Omega$ is a domain of compact closure with a smooth boundary
- $u: \overline{\Omega_{T}} \rightarrow \mathbb{R}$ is twice continuously differentiable in space and once continuously differentiable in time with derivatives extending continuously to the boundary (i.e. $\left.u \in C^{2 ; 1}\left(\overline{\Omega_{T}}\right)\right)$.
- We define

$$
\begin{aligned}
L^{0} u & =u_{t}-a^{i j} D_{i j} u-b^{i} D_{i} u \\
L u & =u_{t}-a^{i j} D_{i j} u-b^{i} D_{i} u-d u
\end{aligned}
$$

where we assume both of the above are parabolic linear operators. All coefficients will be assumed to be bounded.
Recall that $\Omega_{T}:=\Omega \times[0, T)$. We define the parabolic boundary of $\Omega_{T}$ to be

$$
\mathcal{P} \Omega_{T}=(\partial \Omega \times[0, T)) \cup(\Omega \times\{0\}) .
$$

The hints provided are one possible way of getting the below results - there are many others.
1.1. The weak maximum principle. In this subsection, in addition to the assumptions above, suppose that

- $L^{0}, L$ are weakly parabolic, that is $a^{i j}$ is $\lambda-\Lambda$ positive definite with $0 \leq \lambda<\Lambda$.

Exercise 1. Prove the weak maximum principle (version 1): Suppose that $L^{0} u \leq 0$ on $\Omega_{T}$. Then prove that for any $(x, t) \in \Omega_{T}$,

$$
u(x, t) \leq \sup _{\mathcal{P} \Omega_{T}} u
$$

## Hints:

(1) Prove the above with $L u<0$ (properties of increasing maxima will help you here).
(2) Extend to $L u \leq 0$ by modifying $u$ (e.g. consider $u_{\epsilon}=u+\epsilon e^{-t}$ ).

Exercise 2. Prove the weak maximum principle (version 2): Suppose that $L u \leq 0$ on $\Omega_{T}$ and additionally suppose that $d \leq 0$. Then prove that for any $(x, t) \in \Omega_{T}$,

$$
u(x, t) \leq \max \left\{0, \sup _{\mathcal{P} \Omega_{T}} u\right\}
$$

Exercise 3. Suppose that $f \in C^{0}\left(\Omega_{T}\right)$. Prove uniqueness of solutions $u \in C^{2 ; 1}\left(\overline{\Omega_{T}}\right)$ to $L u=f$ with Dirichlet boundary conditions for some i.e. Suppose that $L u=f$ and $L v=f$ and $u=v$ on $\mathcal{P} \Omega_{T}$ then $u \equiv v$ on $\Omega_{T}$.
1.2. The strong maximum principle. We now improve on the above - typically, we get these using an extra explicit barrier/comparison function. We will additionally need to assume that:

- $L^{0}, L$ are parabolic, that is $a^{i j}$ is $\lambda-\Lambda$ positive definite with $0<\lambda<\Lambda$.
- $\partial \Omega$ is smooth (only needed in the Hopf Lemma and Neumann boundary maximum principle).

Exercise 4. Prove the parabolic Hopf Lemma: Suppose that on a cylinder $B_{r}(0) \times[0, T)$ that there is a point $\left(x_{0}, t_{0}\right)$ with $t_{0}>0$ and $x_{0} \in \partial B_{r}$ such that

$$
u\left(x_{0}, t_{0}\right)>u(x, t) \text { for all }(x, t) \in \overline{B_{r}} \times\left[0, t_{0}\right] \backslash\left\{\left(x_{0}, t_{0}\right)\right\} .
$$

Furthermore suppose that $L u \leq 0$ where either $L$ has $d \leq 0$ or $u\left(x_{0}, t_{0}\right)=0$ (and no assumption on $d$ ). Then

$$
x \cdot D u\left(x_{0}, t_{0}\right)>0 .
$$

Hints: Start with the case $d \leq 0$.
(1) Consider the function $v=e^{-\alpha|x|^{2}}-e^{-\alpha r^{2}}$. Check that $\left.v\right|_{\partial B_{r} \times\left[0, t_{0}\right]}=0$ and, and show that for any $0<\rho<r$ there exists an $\alpha=\alpha(\rho, L)$ such that $L v \leq 0$ on $\left(B_{r} \backslash B_{\rho}\right) \times\left[0, t_{0}\right]$.
(2) Apply the weak maximum principle to show that there exists an $\epsilon>0$ such that $u+\epsilon v \leq u\left(x_{0}, t_{0}\right)$ on $\left(B_{r} \backslash B_{\rho}\right) \times\left[0, t_{0}\right]$. (Hint: By continuity, we know that there exists $a \delta>0$ such that on $\left.\left.\left(B_{r} \backslash B_{\rho}\right) \times\{0\}\right) \cup\left(\partial B_{\rho} \times\left[0, t_{0}\right]\right), u \leq u\left(x_{0}, t_{0}\right)-\delta\right)$
(3) Take derivatives at $\left(x_{0}, t_{0}\right)$ to get the Lemma.
(4) For the case with $u\left(x_{0}, t_{0}\right)=0$, set $d_{+}=\max \{d, 0\}$ and consider $\tilde{L} u:=L u+d_{+} u$.

Exercise 5. Prove the Interior maximum property: Suppose $u \in C^{2 ; 1}\left(B_{r}(0) \times[0, T)\right.$ satisfies $L u \leq 0$. Suppose that a maximum of $u$ occurs at time $t_{0}>0$ at the point $0 \in B_{r}$ and that either $d \leq 0$ or alternatively $u\left(0, t_{0}\right)=0$ (and no sign on $d$ ). Furthermore, suppose that $u\left(0, t_{0}\right)>u(x, t)$ for all $t<t_{0}$. Then $u_{t}\left(0, t_{0}\right)>0$.
Hints: As previously, start with the case $d \leq 0$.
(1) Consider $v=e^{-\left(|x|^{2}+\alpha\left(t-t_{0}\right)\right)}-1$, show that for $\alpha$ large enough, $L v<0$ on $B_{r}(0) \times\left[0, t_{0}\right]$.
(2) Now consider $Q=\left\{(x, t) \in B_{r}(0) \times\left[0, t_{0}\right]:|x|^{2}+\alpha\left(t-t_{0}\right) \geq 0\right\}$. Note that on $\mathcal{P}\left(B_{r}(0) \times\left[0, t_{0}\right]\right) \cap Q, u<u\left(0, t_{0}\right)-\delta$. Therefore show that (as $v=0$ on the parabola $\left.\partial Q \backslash\left(\mathcal{P}\left(B_{r}(0) \times\left[0, t_{0}\right]\right)\right)\right)$ there is an $\epsilon>0$ so that $u+\epsilon v \leq u\left(x_{0}, t_{0}\right)$. To do this, you will need a small modification of the above weak maximum principles.
(3) Therefore deduce the statement by differentiating at $\left(0, t_{0}\right)$.

Exercise 6. Show that, under the assumptions of the previous step, $u$ cannot be positive. (Hint, look at the equation...)

Exercise 7. Prove the Strong Maximum Principle: Suppose that $L$ has $0<\lambda<\Lambda<\infty$, bounded coefficients and $d \leq 0$. Lu $\leq 0$ for some $u \in C^{2,1}\left(\Omega_{T}\right)$. Suppose that for some $x_{0} \in \Omega$ and $t_{0} \in(0, T)$

$$
\sup _{\Omega_{T}} u=u\left(x_{0}, t_{0}\right) .
$$

Then $u(x, t) \equiv u\left(x_{0}, t_{0}\right)$ is a constant function.

Exercise 8. Prove a Neumann maximum principle: For $L$ uniformly parabolic with $d \leq 0$ and $u \in C^{2,1}\left(\Omega_{T}\right)$ satisfies

$$
\begin{cases}L u \leq 0 & \text { in } \Omega_{T} \\ D u \cdot \nu \leq 0 & \text { on } \partial \Omega \times[0, T) \\ u(\cdot, 0)=u_{0}(\cdot) & \end{cases}
$$

where $\nu$ is the outward pointing unit vector to $\partial \Omega$. Show that $\sup _{\Omega_{T}} u \leq \max \left\{\sup _{\Omega} u_{0}, 0\right\}$.

### 1.3. Nonlinear maximum principle.

Exercise 9. Prove a nonlinear comparison principle: Suppose that $F$ is $C^{1}$ and $P(u)=$ $u_{t}-F\left(D^{2} u, D u, u, x, t\right)$. Suppose that $u, v \in C^{2,1}\left(\overline{\Omega_{T}}\right)$ are admissable and that $\Gamma_{\lambda \Lambda}$ is convex. Suppose that

$$
P u \leq P v \text { on } \Omega \text { and } u \leq v \text { on } \mathcal{P} \Omega_{T} .
$$

Show that $u \leq v$ on $\Omega_{T}$.
Hint: Use Taylor's theorem/mean value theorem to get a linear parabolic equation for $u-v$.
1.4. A local maximum principle via the ABP inequality. For a function $u$, a point $(x, t)$ is called an upper contact point if there exists a vector $\xi$ such that

$$
u(x, t)+\xi \cdot(y-x) \geq u(y, s)
$$

for all $(y, s) \in \Omega \times(0, t]$. Define $E(u)$ to be all such upper contact points. Suppose now that $\Omega \subset B_{R}$. We define

$$
E_{+}(u)=\left\{(x, t) \in E(u): R|\xi|<u(x, t)-\xi \cdot x \leq \sup u^{+}\right\}
$$

Exercise 10. Suppose that $u \in C^{2 ; 1}$ and $u \leq 0$ on $P\left(\Omega_{T}\right)$. Prove the Alexandrov-BakelmanPucci inequality (ABP-inequality):

$$
\sup _{\Omega \times(0, T)} u \leq c(n) R^{\frac{n}{n+1}}\left(\int_{E_{+}}\left|u_{t} \operatorname{det} D^{2} u\right|\right)^{\frac{1}{n+1}}
$$

Hints:
(1) Consider the mapping $\Phi(x, t)=(D u, u-x \cdot D u)$ and compute its Jacobian. Integrate the Jacobian over $E_{+}(u)$ and estimate this from below by $\int_{\Phi\left(E_{+}\right)} 1 d \mu$.
(2) Next, by considering contact planes show that the sawn-off cone $\Sigma:=\{(\xi, h): R|\xi|<$ $\left.h<\frac{1}{2} \sup u\right\}$ satisfies $\Sigma \subset \Phi\left(E_{+}\right)$.
(3) The inequality now follows by explicitly computing the volume of $\Sigma$ in terms of $\sup u$.

Exercise 11. For the simplified parabolic equation $L u=u_{t}-a^{i j} D_{i j}^{2} u$, suppose that $L u \leq f$ on $\Omega_{T}$. Prove a maximum principle of the form

$$
\sup _{\Omega_{T}} u \leq \sup _{\mathcal{P}\left(\Omega_{T}\right)} u+c(n, \lambda, \Lambda) R^{\frac{n}{n+1}}\|f\|_{L^{n+1}} .
$$

Hint: Use the ABP inequality along with the arithmetic-geometric inequality.

