MAXIMUM PRINCIPLES

1. EXERCISES

Throughout, we will assume that

- Ω is a domain of compact closure with a smooth boundary
- $u : \overline{\Omega_T} \to \mathbb{R}$ is twice continuously differentiable in space and once continuously differentiable in time with derivatives extending continuously to the boundary (i.e. $u \in C^{2;1}(\overline{\Omega_T})$).
- We define

$$L^{0}u = u_{t} - a^{ij}D_{ij}u - b^{i}D_{i}u$$
$$Lu = u_{t} - a^{ij}D_{ij}u - b^{i}D_{i}u - du$$

where we assume both of the above are parabolic linear operators. All coefficients will be assumed to be bounded.

Recall that $\Omega_T := \Omega \times [0, T)$. We define the *parabolic boundary* of Ω_T to be

$$\mathcal{P}\Omega_T = (\partial \Omega \times [0,T)) \cup (\Omega \times \{0\})$$
.

The hints provided are one possible way of getting the below results – there are many others.

1.1. The weak maximum principle. In this subsection, in addition to the assumptions above, suppose that

• L^0 , L are weakly parabolic, that is a^{ij} is λ - Λ positive definite with $0 \leq \lambda < \Lambda$.

Exercise 1. Prove the weak maximum principle (version 1): Suppose that $L^0 u \leq 0$ on Ω_T . Then prove that for any $(x, t) \in \Omega_T$,

$$u(x,t) \le \sup_{\mathcal{P}\Omega_T} u$$

Hints:

- (1) Prove the above with Lu < 0 (properties of increasing maxima will help you here).
- (2) Extend to $Lu \leq 0$ by modifying u (e.g. consider $u_{\epsilon} = u + \epsilon e^{-t}$).

Exercise 2. Prove the weak maximum principle (version 2): Suppose that $Lu \leq 0$ on Ω_T and additionally suppose that $d \leq 0$. Then prove that for any $(x, t) \in \Omega_T$,

$$u(x,t) \le \max\left\{0,\sup_{\mathcal{P}\Omega_T}u\right\}$$

Exercise 3. Suppose that $f \in C^0(\Omega_T)$. Prove uniqueness of solutions $u \in C^{2;1}(\overline{\Omega_T})$ to Lu = f with Dirichlet boundary conditions for some i.e. Suppose that Lu = f and Lv = f and u = v on $\mathcal{P}\Omega_T$ then $u \equiv v$ on Ω_T .

1.2. The strong maximum principle. We now improve on the above - typically, we get these using an extra explicit barrier/comparison function. We will additionally need to assume that:

- L^0 , L are parabolic, that is a^{ij} is λ - Λ positive definite with $0 < \lambda < \Lambda$.
- $\partial \Omega$ is smooth (only needed in the Hopf Lemma and Neumann boundary maximum principle).

Exercise 4. Prove the parabolic Hopf Lemma: Suppose that on a cylinder $B_r(0) \times [0, T)$ that there is a point (x_0, t_0) with $t_0 > 0$ and $x_0 \in \partial B_r$ such that

$$u(x_0, t_0) > u(x, t)$$
 for all $(x, t) \in B_r \times [0, t_0] \setminus \{(x_0, t_0)\}$

Furthermore suppose that $Lu \leq 0$ where either L has $d \leq 0$ or $u(x_0, t_0) = 0$ (and no assumption on d). Then

$$x \cdot Du(x_0, t_0) > 0$$

Hints: Start with the case $d \leq 0$ *.*

- (1) Consider the function $v = e^{-\alpha |x|^2} e^{-\alpha r^2}$. Check that $v|_{\partial B_r \times [0,t_0]} = 0$ and, and show that for any $0 < \rho < r$ there exists an $\alpha = \alpha(\rho, L)$ such that $Lv \leq 0$ on $(B_r \setminus B_\rho) \times [0,t_0]$.
- (2) Apply the weak maximum principle to show that there exists an $\epsilon > 0$ such that $u + \epsilon v \leq u(x_0, t_0)$ on $(B_r \setminus B_{\rho}) \times [0, t_0]$. (Hint: By continuity, we know that there exists a $\delta > 0$ such that on $(B_r \setminus B_{\rho}) \times \{0\}) \cup (\partial B_{\rho} \times [0, t_0]), u \leq u(x_0, t_0) \delta$)
- (3) Take derivatives at (x_0, t_0) to get the Lemma.
- (4) For the case with $u(x_0, t_0) = 0$, set $d_+ = \max\{d, 0\}$ and consider $\tilde{L}u := Lu + d_+u$.

Exercise 5. Prove the Interior maximum property: Suppose $u \in C^{2;1}(B_r(0) \times [0, T)$ satisfies $Lu \leq 0$. Suppose that a maximum of u occurs at time $t_0 > 0$ at the point $0 \in B_r$ and that either $d \leq 0$ or alternatively $u(0, t_0) = 0$ (and no sign on d). Furthermore, suppose that $u(0, t_0) > u(x, t)$ for all $t < t_0$. Then $u_t(0, t_0) > 0$.

Hints: As previously, start with the case $d \leq 0$.

- (1) Consider $v = e^{-(|x|^2 + \alpha(t-t_0))} 1$, show that for α large enough, Lv < 0 on $B_r(0) \times [0, t_0]$.
- (2) Now consider $Q = \{(x,t) \in B_r(0) \times [0,t_0] : |x|^2 + \alpha(t-t_0) \ge 0\}$. Note that on $\mathcal{P}(B_r(0) \times [0,t_0]) \cap Q$, $u < u(0,t_0) \delta$. Therefore show that (as v = 0 on the parabola $\partial Q \setminus (\mathcal{P}(B_r(0) \times [0,t_0])))$ there is an $\epsilon > 0$ so that $u + \epsilon v \le u(x_0,t_0)$. To do this, you will need a small modification of the above weak maximum principles.
- (3) Therefore deduce the statement by differentiating at $(0, t_0)$.

ŝ

Exercise 6. Show that, under the assumptions of the previous step, u cannot be positive. (*Hint, look at the equation...*)

Exercise 7. Prove the Strong Maximum Principle: Suppose that L has $0 < \lambda < \Lambda < \infty$, bounded coefficients and $d \leq 0$. $Lu \leq 0$ for some $u \in C^{2,1}(\Omega_T)$. Suppose that for some $x_0 \in \Omega$ and $t_0 \in (0,T)$

$$\sup_{\Omega_T} u = u(x_0, t_0) \; .$$

Then $u(x,t) \equiv u(x_0,t_0)$ is a constant function.

Exercise 8. Prove a Neumann maximum principle: For L uniformly parabolic with $d \leq 0$ and $u \in C^{2,1}(\Omega_T)$ satisfies

$$\begin{cases} Lu \leq 0 & \text{in } \Omega_T \\ Du \cdot \nu \leq 0 & \text{on } \partial\Omega \times [0,T) \\ u(\cdot,0) = u_0(\cdot) \end{cases}$$

where ν is the outward pointing unit vector to $\partial\Omega$. Show that $\sup_{\Omega_{\tau}} u \leq \max\{\sup_{\Omega} u_0, 0\}$.

1.3. Nonlinear maximum principle.

Exercise 9. Prove a nonlinear comparison principle: Suppose that F is C^1 and $P(u) = u_t - F(D^2u, Du, u, x, t)$. Suppose that $u, v \in C^{2,1}(\overline{\Omega_T})$ are admissable and that $\Gamma_{\lambda\Lambda}$ is convex. Suppose that

 $Pu \leq Pv$ on Ω and $u \leq v$ on $\mathcal{P}\Omega_T$.

Show that $u \leq v$ on Ω_T .

Hint: Use Taylor's theorem/mean value theorem to get a linear parabolic equation for u - v.

1.4. A local maximum principle via the ABP inequality. For a function u, a point (x, t) is called an upper contact point if there exists a vector ξ such that

$$u(x,t) + \xi \cdot (y-x) \ge u(y,s)$$

for all $(y, s) \in \Omega \times (0, t]$. Define E(u) to be all such upper contact points. Suppose now that $\Omega \subset B_R$. We define

$$E_{+}(u) = \{(x,t) \in E(u) : R|\xi| < u(x,t) - \xi \cdot x \le \sup u^{+}\}$$

Exercise 10. Suppose that $u \in C^{2;1}$ and $u \leq 0$ on $P(\Omega_T)$. Prove the Alexandrov–Bakelman-Pucci inequality (ABP-inequality):

$$\sup_{\Omega \times (0,T)} u \le c(n) R^{\frac{n}{n+1}} \left(\int_{E_+} |u_t \det D^2 u| \right)^{\frac{1}{n+1}}$$

Hints:

- (1) Consider the mapping $\Phi(x,t) = (Du, u x \cdot Du)$ and compute its Jacobian. Integrate the Jacobian over $E_+(u)$ and estimate this from below by $\int_{\Phi(E_+)} 1d\mu$.
- (2) Next, by considering contact planes show that the sawn-off cone $\Sigma := \{(\xi, h) : R | \xi | < h < \frac{1}{2} \sup u \}$ satisfies $\Sigma \subset \Phi(E_+)$.
- (3) The inequality now follows by explicitly computing the volume of Σ in terms of $\sup u$.

Exercise 11. For the simplified parabolic equation $Lu = u_t - a^{ij}D_{ij}^2u$, suppose that $Lu \leq f$ on Ω_T . Prove a maximum principle of the form

$$\sup_{\Omega_T} u \le \sup_{\mathcal{P}(\Omega_T)} u + c(n,\lambda,\Lambda) R^{\frac{n}{n+1}} \|f\|_{L^{n+1}}$$

Hint: Use the ABP inequality along with the arithmetic-geometric inequality.