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After publication of [1] we found out that the proof of Theorem 1.1 [1, p. 6798]
is not complete, as the subsequential limiting spheres obtained from the equality
case in the Heintze-Karcher inequality do not have to be centered at the origin.

In this addendum we provide the following workaround: Along the variation
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the quermassintegrals Wk of the enclosed convex bodies evolve by
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where Λ′(r) = λ(r) and hence

Λ;ij = (λr;i);j = λ′r;ir;j + λr;ij = λ′gij − uhij

and the positive constant cn,k may vary between the equalities. As Hij
k is divergence

free in spaceforms, integration by parts gives
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for some uniform constant δ, since in [1, Sec. 6,7] we have proven uniform barrier
estimates as well as preservation of convexity. There can not exist ε > 0, such thatˆ
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for otherwise the long-time existence would imply that Wk turns negative in finite
time, which is impossible. Hence there exists a subsequence of times (tm) withˆ
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Hij
k r;ir;j → 0 as m→∞.

However, from [1, (8.4)] we know that any convergent subsequence of (Mtm) must
converge to a geodesic sphere. Pick such a subsequence (not relabelled), then along

this subsequence Hij
k converges to gij and we obtain that the limit Mt∞ satisfiesˆ

Mt∞

‖∇r‖2 = 0.

Hence this limit is a sphere centered at the origin. Due to the barrier estimates,
which imply arbitrary annuli are preserved by the flow, the whole flow must converge
to a uniquely determined sphere centered at the origin.
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