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Closed Soap Bubbles

Isoperimetric problem: Determine properties of area minimising
surface, given volume constraint.
Round spheres in Rn+1 are unique closed minimisers of

R(Ω) =
Area

n+1
n (∂Ω)

Volume(Ω)

Standard variational methods:
▶ Minimisers of R have constant mean curvature

H = tr(A) =
n∑

i=1

κi

(κi ) are eigenvalues of the Weingarten map A, principal curvatures.
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Alexandrov’s theorem

Is a closed embedded constant mean curvature (CMC) hypersurface
of Rn+1 necessarily a sphere?

Answer: YES! (Alexandrov1)
▶ Proof: Reflection across moving planes and the maximum principle.
▶ We are going to see another elegant proof today.

Relaxed CMC condition: Suppose for some δ > 0, on a hypersurface M

n − δ ≤ H ≤ n + δ.

Can we conclude
dist(M,S) ≤ Cϵ

for the unit sphere S , a constant C and where

lim
δ→0

ϵ(δ) = 0 ?

1A characteristic property of spheres, Ann. Mat. Pura Appl. 58 (1962), no. 4,
303–315.
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The question of stability

Theorem (Giulio Ciraolo and Luigi Vezzoni)

A sharp quantitative version of Alexandrov’s theorem via the method of moving
planes, J. Eur. Math. Soc. 20 (2018), no. 2, 261–299.

Let Ω be a smooth domain with connected boundary, then ∂Ω lies within
an annulus of thickness C osc(H). C depends on |∂Ω| and a lower bound
for interior and exterior balls.

Generalization to spaceforms and other curvature functions

F = F (κi )

was given by Ciraolo/Roncoroni/Vezzoni.2

2Quantitative stability for hypersurfaces with almost constant curvature in space
forms, Ann. Mat. Pura Appl. 200 (2021), no. 5, 2043–2083.
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The question of stability

Theorem (Rolando Magnanini and Giorgio Poggesi)

On the stability for Alexandrov’s soap bubble theorem, J. Anal. Math. 139 (2019),
no. 1, 179–205.

Let Ω be a smooth domain with connected boundary, then ∂Ω lies within
an annulus of thickness at most C∥H − H0∥τnL1(∂Ω)

, where

H0 =
n

n + 1
|∂Ω|
|Ω|

,

τn is a dimensional constant and C depends on few geometric quantities,
such as interior and exterior ball conditions.

J. Scheuer Stability for anisotropic energies Freiburg, 02/10/24 5 / 23



Ambient anisotropic geometry

Let W (aka Wulff shape) be the smooth boundary of a convex body
W0 containing the origin.

▶ Minkowski norm

F 0(x) = inf{s > 0 : x ∈ sW0}

▶ Then W = {F 0 = 1}.
q(x) = 1

2(F
0(x))2 is smooth and strictly convex, hence

ḡ(x) := D2q(x)

is a metric on Rn+1\{0}.
Let F (z) = supx∈W ⟨x , z⟩ be the support function of W,

▶ Φ = (gradF )|Sn : Sn → W is an embedding of the Wulff shape.
▶ Φ is the inverse of the Gauss map of W.
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Induced anisotropic geometry

Let x : Mn → Rn+1 embedding with M closed manifold, ν̃ : M → Sn
its normal vector field aka Gauss map.

▶ Anisotropic normal ν = Φ ◦ ν̃ = “position ν(x) on the Wulff shape, at
which the normal of the Wulff shape equals ν̃(x)”

Tangent space coincidence: TxM = Tν̃(x)Sn = Tν(x)W.
▶ Homogeneity of F 0 implies for all tangent vectors V ∈ TxM,

ḡν(ν, ν) = 1, gν(ν,V ) = 0

▶ Induced anisotropic metric and second fundamental form:

gij(x) = ḡν(x)(∂ix , ∂jx), hij = ḡν(x)(∂iν, ∂jx).

▶ Anisotropic mean curvature H = g ijhij ≡ tr(A).

Anisotropic volume element dµ = F (ν̃)d voln ( ̸= volume element
induced from g).
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Level sets

For a function f on Rn+1, define the F -gradient by

∇♯
F f = F (D♯f )D♯F (D♯f ).

▶ On a regular level set M of f this coincides with the definition

ḡν(x)(∇♯
F f ,V ) = Df (x)V ∀V ∈ TxM.

Define the F -Hessian endomorphism by

∇2
F f = D2(1

2F
2)(D♯f ) ◦ D2f

▶ On a regular level set M of f this coincides with

∇2
F f = ḡ−1

ν(x) ◦ D
2f

▶ Operator degenerates where Df = 0.
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Anisotropic level-set stability

Theorem (with Xuwen Zhang)

Stability of the Wulff shape with respect to anisotropic curvature functionals,
(2023).

Let n ≥ 2, M ⊂ Rn+1 closed hypersurface, F an elliptic integrand,
µ(M) = 1. Let U be one-sided neighbourhood of M, given by level sets of
f ∈ C 2(Ū),

Ū =
⋃

0≤t≤max|f |

Mt , Mt = {|f | = t},

with f|M = 0 and df|Ū > 0. Let p > n and max0≤t≤max|f | ∥A∥p,Mt ≤ C0.
Then

dist(M,W) ≤ C (n, p,F ,C0)

min(max|f |,min|df |)
p

p+1

(ˆ
U
|∇̊2

F f |p
) 1

p+1

for the Wulff shape corresponding to F , provided the RHS is small.
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Some words about the proof

If h is the anisotropic 2nd fundamental form of any regular level set of
f , then

∇2f|M = F (D♯f )h.

Hence
F 2(D♯f )|Å|2 ≤ |∇̊2

F f |2,

where Å is the tracefree part of the anisotropic second fundamental
form,

|Å|2 = cn
∑
i<j

(κi − κj)
2.
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Some words about the proof

Hence Å can be controlled by ∇̊2
F f .

Classical result from (isotropic) hypersurface theory, due to Darboux:

Å = 0 ⇒ M = Sphere.

▶ A similar result holds in the anisotropic world3

Stability versions in the isotropic case are plentyfull and due to De
Lellis/Müller, Topping, Grosjean.

▶ In the anisotropic world there is a recent one...

3Yijun He and Haizhong Li: Integral formula of Minkowski type and new
characterization of the Wulff shape, Acta Math. Sin. 24 (2008), no. 4, 697–704.
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Some words about the proof

Theorem (Antonio De Rosa, Stefano Gioffré)

Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and
quasi-Einstein hypersurfaces, J. Reine Angew. Math. 780 (2021), 1–40.

Let M ⊂ Rn+1 be a closed hypersurface, W a Wulff shape, p > n and

|M| = |W|, ∥A∥Lp(M) ≤ c0.

Then there exist C = C (n, p,F , c0) > 0, such that: if

∥Å∥Lp(M) ≤ 1
C ,

then there exists c ∈ Rn+1 and a parametrization ψ : W → M, such that

∥ψ − id−c∥W 2,p(W) ≤ C∥Å∥Lp(M).
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Application I: Anisotropic Heintze-Karcher

Stability of the domain in the Heintze-Karcher inequality. In the
Euclidean space Rn+1, for every domain Ω with mean-convex ∂Ω:

ˆ
∂Ω

n

H
≥ (n + 1) vol(Ω)

with equality precisely when Ω is a ball.
▶ The same holds in the anisotropic setting, if we integrate w.r.t. the

anisotropic area measure.
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Application I: Anisotropic Heintze-Karcher

Theorem (with Xuwen Zhang, Stability in the anisotropic
Heintze-Karcher)

Let n ≥ 2, α > 0 and F be an elliptic integrand on Rn+1. Let Ω ⊂ Rn+1 be
a bounded domain with connected F -mean convex C 2,α-boundary that
satisfies a uniform interior Wulff sphere condition with radius r . Then there
exists a positive constant C depending only on n, α,F , r , µ(∂Ω) and
|∂Ω|2,α, such that

dist(∂Ω,W) ≤ C

(ˆ
∂Ω

1
H

dµ− n + 1
n

|Ω|
) 1

n+2

for some Wulff sphere W ⊂ Rn+1, provided the RHS is sufficiently small.
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Proof of Heintze-Karcher stability

The key for stability is the following estimate

ˆ
Ω
|∇̊2

F f |2 dx ≤
(

n

n + 1

)2 ˆ
∂Ω

1
H

dµ− n + 1
n

|Ω|,

where
div(D♯(1

2F
2)(D♯f )) =: ∆F f = 1 in Ω

f = 0 on ∂Ω.

▶ Follows from divergence theorem type argument and Hölder’s
inequality.

▶ f shall serve as the foliation function in a neighbourhood of ∂Ω.
▶ For this we need a lower gradient bound of f on ∂Ω.
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Proof of Heintze-Karcher stability

Lemma (Gradient bound on ∂Ω)

Let Ω ⊂ Rn+1 be a bounded domain with C 2-boundary that satisfies the
uniform interior Wulff sphere condition with radius r and let
f ∈ C 1,β(Ω) ∩W 2,2(Ω) for some β ∈ (0, 1) be a solution of

div(D♯(1
2F

2)(D♯f )) = 1 in Ω

f = 0 on ∂Ω.

then
|D♯f | ≥ C (n,F )r on ∂Ω.

From here, higher regularity in a controlled neighbourhood of ∂Ω
follows from Schauder theory.
The level set stability theorem completes the proof of the anisotropic
Heintze-Karcher stability.
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Application II: Stability in the anisotropic soap bubble
theorem

Theorem (with Xuwen Zhang, Stability in the anisotropic soap bubble
theorem)

Let n ≥ 2, α > 0 and F be an elliptic integrand on Rn+1. Let Ω ⊂ Rn+1 be
a bounded domain with connected boundary ∂Ω ∈ C 2,α that satisfies a
uniform interior Wulff sphere condition with radius r . Then there exists a
positive constant C depending only on n, α,F , r , µ(∂Ω), such that

dist(∂Ω,W) ≤ C
∥∥∥H − n

n+1
µ(∂Ω)
|Ω|

∥∥∥ 1
n+2

1,∂Ω

for some Wulff sphere W ⊂ Rn+1, provided the RHS is sufficiently small.
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Integral approach

Key ingredient in the isotropic case (A. Ros): Use Reilly’s integral
identity.
For C 2-functions f on a domain Ω ⊂ Rn+1, with f|∂Ω = const:

ˆ
Ω
(∆f )2 −

ˆ
Ω
|∇2f |2 =

ˆ
∂Ω

H(∂ν f )
2.

Cauchy-Schwarz-deficit:

|∇̊2f |2 = |∇2f |2 − 1
n+1(∆f )2,

Then ˆ
Ω
|∇̊2f |2 =

n

n + 1

ˆ
Ω
(∆f )2 −

ˆ
∂Ω

H(∂ν f )
2.

Solve
∆f = 1 in Ω

f = 0 on ∂Ω.
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Integral approach

Then
ˆ
Ω
|∇̊2f |2 =

n

(n + 1) vol(Ω)

(ˆ
Ω
∆f

)2

−
ˆ
∂Ω

H(∂ν f )
2

=
n

(n + 1) vol(Ω)

(ˆ
∂Ω
∂ν f

)2

−
ˆ
∂Ω

H(∂ν f )
2

≤ n

(n + 1)
Area(∂Ω)

vol(Ω)

ˆ
∂Ω

(∂ν f )
2 −
ˆ
∂Ω

H(∂ν f )
2

≡
ˆ
∂Ω

(H0 − H)(∂ν f )
2.
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Application III: Serrin’ problem

Serrin’s overdetermined problem asks which domains Ω allow solutions
to

∆u = 1 in Ω

u = 0 on ∂Ω
|∇u| = c on ∂Ω.

▶ The answer is: Only balls.

The anisotropic version (yielding equality to the Wulff shape)

div(D♯(1
2F

2)(D♯f )) = 1 in Ω

f = 0 on ∂Ω

F (D♯f ) = c on ∂Ω

is due to Cianchi/Salani.4
4Overdetermined anisotropic elliptic problems, Math. Ann. 345 (2009), no. 4,

859–881.
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Application III: Stability in the anisotropic Serrin problem

Theorem (with Xuwen Zhang, Stability in the anisotropic Serrin
problem)

Let n ≥ 2, α > 0 and F be an elliptic integrand on Rn+1. Let Ω ⊂ Rn+1 be
a bounded domain with connected boundary ∂Ω ∈ C 2,α that satisfies a
uniform interior Wulff sphere condition with radius r . Then there exists a
positive constant depending only on n, α,F , r , diam(Ω), µ(∂Ω) and
|∂Ω|2,α, such that

dist(∂Ω,W) ≤ C
∥∥∥F (D♯f )− |Ω|

µ(∂Ω)

∥∥∥ 1
2(n+2)

1,∂Ω

for some Wulff sphere W ⊂ Rn+1, provided the RHS is sufficiently small.
Here

div(D♯(1
2F

2)(D♯f )) = 1 in Ω

f = 0 on ∂Ω.
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Application III: Stability in the anisotropic Serrin problem

The proof works via the use of a so-called P-function. In our setting,

P =
F 2(D♯f )

2
− 1

n + 1
f .

▶ A computation gives
div(∇♯

FP) = |∇̊2
F f |2.

The next crucial ingredient is the Pohozaev-type identity
ˆ
Ω
P =

1
2(n + 1)

ˆ
∂Ω

F 2(D♯f ) ⟨x , ν̃⟩ .

Further computations lead to
ˆ
Ω
(−f )|˚̄∇2

F f |2 dx =
1
2

ˆ
M

(
F 2(D♯f )− |Ω|2

µ(M)2

)〈
∇̄♯

F f − ∇̄♯
F ℓ, ν̃

〉
d µ̃,

where ℓ(x) = (F 0(x))2/(2(n + 1)).
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Thank you!
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