MAXIMUM PRINCIPLES

1. EXERCISES

Throughout, we will assume that
e () is a domain of compact closure with a smooth boundary
e u : Qp — R is twice continuously differentiable in space and once continuously
differentieﬁe in time with derivatives extending continuously to the boundary (i.e.
u e C*5(Qr)).
e We define
LOU = Ut — CLijDijU, — lezu
Lu=u; — aijDiju — b Dju — du
where we assume both of the above are parabolic linear operators. All coefficients
will be assumed to be bounded.
Recall that Qp := Q x [0,T). We define the parabolic boundary of Qr to be

PQr = (092 x [0, 7)) U (2 x {0}) .
The hints provided are one possible way of getting the below results — there are many others.

1.1. The weak maximum principle. In this subsection, in addition to the assumptions
above, suppose that

e L% L are weakly parabolic, that is a¥ is A\-A positive definite with 0 < X\ < A.

Exercise 1. Prove the weak maximum principle (version 1): Suppose that L% < 0 on Q.
Then prove that for any (z,t) € Qr,

u(z,t) < supu
PQr

Hints:

(1) Prove the above with Lu < 0 (properties of increasing mazima will help you here).
(2) Extend to Lu < 0 by modifying u (e.g. consider u. = u + ee™").

Exercise 2. Prove the weak maximum principle (version 2): Suppose that Lu < 0 on Qp
and additionally suppose that d < 0. Then prove that for any (x,t) € Qr,

u(z,t) < max {O, sup u}
PQr

Exercise 3. Suppose that f € C°(€r). Prove uniqueness of solutions v € C%'(Qr) to
Lu = f with Dirichlet boundary conditions for some i.e. Suppose that Lu = f and Lv = f
and © = v on PQp then u = v on Q.



1.2. The strong maximum principle. We now improve on the above - typically, we get
these using an extra explicit barrier/comparison function. We will additionally need to
assume that:

e [V L are parabolic, that is a¥/ is A\-A positive definite with 0 < A < A.
e 00 is smooth (only needed in the Hopf Lemma and Neumann boundary maximum
principle).

Exercise 4. Prove the parabolic Hopf Lemma: Suppose that on a cylinder B,.(0) x [0,7T)
that there is a point (zg,ty) with ¢y > 0 and xy € 9B, such that

u(zo,to) > u(x,t) for all (z,t) € B, x [0,t] \ {(w0,0)}

Furthermore suppose that Lu < 0 where either L has d < 0 or u(xg,ty) = 0 (and no
assumption on d). Then

x - Du(zg,t9) >0 .
Hints: Start with the case d < 0.

(1) Consider the function v = e~ — e~ Check that v|op,«jos] = 0 and, and
show that for any 0 < p < r there exists an a = «(p,L) such that Lv < 0 on
(B, \ B,) x [0,1%0].

(2) Apply the weak mazimum principle to show that there exists an ¢ > 0 such that
u+ ev < u(zg,ty) on (B, \ B,) x [0,t]. (Hint: By continuity, we know that there
exists a 6 > 0 such that on (B, \ B,) x {0}) U (0B, x [0,10]), u < u(zo,ty) —6)

(8) Take derivatives at (xo,to) to get the Lemma. )

(4) For the case with u(xg,tg) =0, set d; = max{d,0} and consider Lu := Lu + d u.

Exercise 5. Prove the Interior maximum property: Suppose u € C*!(B,.(0) x [0, T) satisfies
Lu < 0. Suppose that a maximum of u occurs at time ty > 0 at the point 0 € B, and that
either d < 0 or alternatively u(0,%y) = 0 (and no sign on d). Furthermore, suppose that
u(0,t9) > u(x,t) for all t < ty. Then u(0,t5) > 0.
Hints: As previously, start with the case d < 0.
(1) Considerv = e~(#*+a(=10)) _1 show that for a large enough, Lv < 0 on B,(0)x [0, t].
(2) Now consider Q = {(z,t) € B.(0) x [0,%] : |z|*> + a(t — to) > 0}. Note that on
P(B(0) x[0,t0)) NQ, u < u(0,ty) — 6. Therefore show that (asv =0 on the parabola
0Q\ (P(B,(0) x [0,10]))) there is an € > 0 so that u+ ev < u(xg,ty). To do this, you
will need a small modification of the above weak maximum principles.
(8) Therefore deduce the statement by differentiating at (0,ty).

Exercise 6. Show that, under the assumptions of the previous step, u cannot be positive.
(Hint, look at the equation...)

Exercise 7. Prove the Strong Maximum Principle: Suppose that L has 0 < A < A < oo,
bounded coefficients and d < 0. Lu < 0 for some v € C*'(Qr). Suppose that for some
xo € Q and ¢y € (0,7)

sup u = u(xo, to) -
Qp

Then u(z,t) = u(xg, to) is a constant function.
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Exercise 8. Prove a Neumann maximum principle: For L uniformly parabolic with d < 0
and u € C%!(Qr) satisfies

Lu<0 in Qr

Du-v <0 on 02 x [0,7)

u(-,0) = uo(")
where v is the outward pointing unit vector to J€2. Show that supq_u < max{supg uo,0}.

1.3. Nonlinear maximum principle.

Exercise 9. Prove a nonlinear comparison principle: Suppose that F is C' and P(u) =
uy — F(D?u, Du,u,z,t). Suppose that u,v € C*'(Qr) are admissable and that I'y, is
convex. Suppose that

Pu<PvonQand u<wvonPQr.

Show that v < v on Q.
Hint: Use Taylor’s theorem/mean value theorem to get a linear parabolic equation for u —v.

1.4. A local maximum principle via the ABP inequality. For a function u, a point
(x,t) is called an upper contact point if there exists a vector £ such that
for all (y, s) € Q2 x (0,t]. Define E(u) to be all such upper contact points. Suppose now that
) C Br. We define

Ey(u) ={(x,t) € E(u) : R|§] <u(z,t) —&-x <supu'}

Exercise 10. Suppose that u € C*! and u < 0 on P(Qr). Prove the Alexandrov—Bakelman-
Pucci inequality (ABP-inequality):

1
n ﬁ
sup u < ¢(n)RnT (/ |u; det D2u|)
QX(O,T) E+
Hints:

(1) Consider the mapping ®(z,t) = (Du,u—x - Du) and compute its Jacobian. Integrate
the Jacobian over E.(u) and estimate this from below by f<I>(E+) ldpu.

(2) Next, by considering contact planes show that the sawn-off cone ¥ := {(§, h) : R|¢| <
h < supu} satisfies & C P(E,).

(8) The inequality now follows by explicitly computing the volume of 3 in terms of sup u.

Exercise 11. For the simplified parabolic equation Lu = u; — a" D};u, suppose that Lu < f
on (7. Prove a maximum principle of the form

supu < sup u+ c(n, A, A) R+
Qr P(Qr)

| fllpnsr

Hint: Use the ABP inequality along with the arithmetic-geometric inequality.
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